

SPC BENCHMARK 1TM FULL DISCLOSURE REPORT

HUAWEI TECHNOLOGIES CO., LTD. HUAWEI OCEANSTORTM 2600 V3

SPC-1 V1.14

Submitted for Review: December 20, 2016

First Edition - December 2016

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item has been reviewed by Huawei Technologies Co., Ltd. for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in the United States. Huawei Technologies Co., Ltd. may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local Huawei Technologies Co., Ltd. representative for information on products and services available in your area.

© Copyright Huawei Technologies Co., Ltd. 2016. All rights reserved.

Permission is hereby granted to reproduce this document in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark-1, SPC-1, SPC-1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks of the Storage Performance Council. Huawei, the Huawei logo and OceanStor are trademarks or registered trademarks of Huawei Technologies Co., Ltd. in the United States and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Submission Identifier: A00182

Table of Contents

Note: Each line in the Table of Contents is a hyperlink to the listed item/page	
Audit Certification	vi
Audit Certification (cont.)	vii
Letter of Good Faith	ix
Executive Summary	10
Test Sponsor and Contact Information	10
Revision Information and Key Dates	
Tested Storage Product (TSP) Description	
Summary of Results	
Storage Capacities, Relationships, and Utilization	
Response Time - Throughput Curve	
Response Time - Throughput Data	16
Priced Storage Configuration Pricing	17
Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration	
Priced Storage Configuration Diagram	
Priced Storage Configuration Components	20
Configuration Information	21
Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Dia	gram.21
Storage Network Configuration	21
Host System(s) and Tested Storage Configuration (TSC) Table of Compo	nents 21
Benchmark Configuration/Tested Storage Configuration Diagram	22
Host System and Tested Storage Configuration Components	28
Benchmark Configuration/Tested Storage Configuration Major Compon Major Component Relationships and Connections	
Benchmark Configuration/Tested Storage Configuration Major Components	
Host System, Engine, Controller and FC Module Relationships	
Host System FC HBA/Controller Host Port FC Connections	
System Enclosure, Engine, Controller and SSD Relationships	
Customer Tunable Parameters and Options	
Tested Storage Configuration (TSC) Description	
SPC-1 Workload Generator Storage Configuration	
ASU Pre-Fill	
SPC-1 Data Repository	
Storage Capacities and Relationships	
SPC-1 Storage Capacities	
DI O-1 Diviage Capacities	∠⋷

Submission Identifier: A00182

SPC-1 Storage Hierarchy Ratios	30
SPC-1 Storage Capacity Charts	30
Storage Capacity Utilization	32
Logical Volume Capacity and ASU Mapping	33
SPC-1 Benchmark Execution Results	34
SPC-1 Tests, Test Phases, and Test Runs	34
"Ramp-Up" Test Runs	35
Primary Metrics Test - Sustainability Test Phase	35
SPC-1 Workload Generator Input Parameters	36
Sustainability Test Results File	36
Sustainability – Data Rate Distribution Data (MB/second)	36
Sustainability – Data Rate Distribution Graph	36
Sustainability – I/O Request Throughput Distribution Data	37
Sustainability – I/O Request Throughput Distribution Graph	37
Sustainability – Average Response Time (ms) Distribution Data	38
Sustainability – Average Response Time (ms) Distribution Graph	38
Sustainability – Response Time Frequency Distribution Data	39
Sustainability – Response Time Frequency Distribution Graph	39
Sustainability – Measured Intensity Multiplier and Coefficient of Variation	40
Primary Metrics Test - IOPS Test Phase	41
SPC-1 Workload Generator Input Parameters	41
IOPS Test Results File	41
IOPS Test Run – I/O Request Throughput Distribution Data	42
IOPS Test Run – I/O Request Throughput Distribution Graph	42
IOPS Test Run – Average Response Time (ms) Distribution Data	43
IOPS Test Run – Average Response Time (ms) Distribution Graph	43
IOPS Test Run –Response Time Frequency Distribution Data	44
IOPS Test Run –Response Time Frequency Distribution Graph	44
IOPS Test Run – I/O Request Information	45
IOPS Test Run – Measured Intensity Multiplier and Coefficient of Variation	45
Primary Metrics Test - Response Time Ramp Test Phase	
SPC-1 Workload Generator Input Parameters	46
Response Time Ramp Test Results File	
Response Time Ramp Distribution (IOPS) Data	
Response Time Ramp Distribution (IOPS) Data (continued)	
Response Time Ramp Distribution (IOPS) Graph	
SPC-1 LRT™ Average Response Time (ms) Distribution Data	
SPC-1 LRT™ Average Response Time (ms) Distribution Graph	
SPC-1 LRT TM (10%) – Measured Intensity Multiplier and Coefficient of Variation	50

Repeatability Test	51
SPC-1 Workload Generator Input Parameters	51
Repeatability Test Results File	52
Repeatability 1 LRT – I/O Request Throughput Distribution Data	53
Repeatability 1 LRT – I/O Request Throughput Distribution Graph	53
Repeatability 1 LRT -Average Response Time (ms) Distribution Data	54
Repeatability 1 LRT -Average Response Time (ms) Distribution Graph	54
Repeatability 1 IOPS – I/O Request Throughput Distribution Data	55
Repeatability 1 IOPS – I/O Request Throughput Distribution Graph	55
Repeatability 1 IOPS –Average Response Time (ms) Distribution Data	56
Repeatability 1 IOPS -Average Response Time (ms) Distribution Graph	56
Repeatability 2 LRT – I/O Request Throughput Distribution Data	57
Repeatability 2 LRT – I/O Request Throughput Distribution Graph	57
Repeatability 2 LRT –Average Response Time (ms) Distribution Data	58
Repeatability 2 LRT –Average Response Time (ms) Distribution Graph	58
Repeatability 2 IOPS – I/O Request Throughput Distribution Data	59
Repeatability 2 IOPS – I/O Request Throughput Distribution Graph	59
Repeatability 2 IOPS –Average Response Time (ms) Distribution Data	60
Repeatability 2 IOPS -Average Response Time (ms) Distribution Graph	60
Repeatability 1 (LRT) Measured Intensity Multiplier and Coefficient of Variation	61
Repeatability 1 (IOPS) Measured Intensity Multiplier and Coefficient of Variation .	61
Repeatability 2 (LRT) Measured Intensity Multiplier and Coefficient of Variation	61
Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation .	62
Data Persistence Test	63
SPC-1 Workload Generator Input Parameters	63
Data Persistence Test Results File	63
Data Persistence Test Results	64
Priced Storage Configuration Availability Date	65
Pricing Information	
	00
Tested Storage Configuration (TSC) and Priced Storage Configuration Differences	65
Anomalies or Irregularities	65
Appendix A: SPC-1 Glossary	66
"Decimal" (powers of ten) Measurement Units	66
"Binary" (powers of two) Measurement Units	66
SPC-1 Data Repository Definitions	66
SPC-1 Data Protection Levels	67
SPC-1 Test Execution Definitions	67

I/O Completion Types	69
SPC-1 Test Run Components	69
Appendix B: Customer Tunable Parameters and Options	70
Red Hat Enterprise Linux 7.0 (64-bit)	70
Appendix C: Tested Storage Configuration (TSC) Creation	71
Step 1: Create Mapping View, LUN Group, Host Group and Host	71
Step 2: Create Disk Domains, Storage Pools, LUNs	71
Step 3: Create Volumes on the Master Host System	72
Step 4: Change the Scheduler on each Host System	
Referenced Scripts	72
mklun.sh	72
mkvolume.sh	74
scheduler.sh	74
Appendix D: SPC-1 Workload Generator Storage Commands and	
Parameters	75
ASU Pre-Fill	75
Primary Metrics, Repeatability and Persistence Tests	75
Appendix E: SPC-1 Workload Generator Input Parameters	76
run.sh	76
Appendix F: Third-Party Quotation	77
Priced Storage Configuration	77
Priced Storage Configuration (continued)	78

AUDIT CERTIFICATION

Submission Identifier: A00182

Submitted for Review: DECEMBER 20, 2016

Xu Zhong Huawei Technologies Co., Ltd. Huawei Chengdu Base No. 1899, Xiyuan Avenue Chengdu, 611731 P.R. China

December 16, 2016

The SPC Benchmark 1TM Reported Data listed below for the Huawei OceanStorTM 2600 V3 was produced in compliance with the SPC Benchmark 1TM v1.14 Remote Audit requirements.

SPC Benchmark 1™ v1.	14 Reported Data			
Tested Storage Product (TSP) Name: Huawei OceanStor™ 2600 V3				
Metric Reported Result				
SPC-1 IOPS™	100,493.48			
SPC-1 Price-Performance	\$0.26/SPC-1 IOPS™			
Total ASU Capacity	2,093.797 GB			
Data Protection Level	Protected 2 (Mirroring)			
Total Price (including three-year maintenance)	\$26,534.48			
Currency Used	U.S. Dollars			
Target Country for availability, sales and support	USA			

The following SPC Benchmark 1TM Remote Audit requirements were reviewed and found compliant with 1.14 of the SPC Benchmark 1TM specification:

- A Letter of Good Faith, signed by a senior executive.
- The following Data Repository storage items were verified by information supplied by Huawei Technologies Co., Ltd.:
 - ✓ Physical Storage Capacity and requirements.
 - ✓ Configured Storage Capacity and requirements.
 - ✓ Addressable Storage Capacity and requirements.
 - ✓ Capacity of each Logical Volume and requirements.
 - ✓ Capacity of each Application Storage Unit (ASU) and requirements.
- The total Application Storage Unit (ASU) Capacity was filled with random data, using an auditor
 approved tool, prior to execution of the SPC-1 Tests.

Gradient Systems, Inc. 643 Bair Island Road, Suite 211 Redwood City, CA 94062 <u>AuditService@storageperformance.org</u> 650.556.9380

AUDIT CERTIFICATION (CONT.)

Huawei OceanStor™ 2600 V3 SPC-1 Audit Certification

Page 2

- An appropriate diagram of the Benchmark Configuration (BC)/Tested Storage Configuration (TSC).
- Listings and commands to configure the Benchmark Configuration/Tested Storage Configuration, including customer tunable parameters that were changed from default values.
- SPC-1 Workload Generator commands and parameters used for the audited SPC Test Runs.
- The following Host System requirements were verified by information supplied by Huawei Technologies Co., Ltd.:
 - ✓ The type of Host Systems including the number of processors and main memory.
 - ✓ The presence and version number of the SPC-1 Workload Generator on each Host System.
 - ✓ The TSC boundary within each Host System.
- The execution of each Test, Test Phase, and Test Run was found compliant with all of the requirements and constraints of Clauses 4, 5, and 11 of the SPC-1 Benchmark Specification.
- The Test Results Files and resultant Summary Results Files received from Huawei Technologies Co.,
 Ltd. for each of following were authentic, accurate, and compliant with all of the requirements and constraints of Clauses 4 and 5 of the SPC-1 Benchmark Specification:
 - ✓ Data Persistence Test
 - ✓ Sustainability Test Phase
 - ✓ IOPS Test Phase
 - ✓ Response Time Ramp Test Phase
 - ✓ Repeatability Test
- There were no differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration.
- The submitted pricing information met all of the requirements and constraints of Clause 8 of the SPC-1 Benchmark Specification.
- The Full Disclosure Report (FDR) met all of the requirements in Clause 9 of the SPC-1 Benchmark Specification.
- · This successfully audited SPC measurement is not subject to an SPC Confidential Review.

Audit Notes:

There were no audit notes or exceptions.

Walter E. Baker

Respectfully,

Walter E. Baker SPC Auditor

Gradient Systems, Inc. 643 Bair Island Road, Suite 211 Redwood City, CA 94062 <u>AuditService@storageperformance.org</u> 650.556.9380

LETTER OF GOOD FAITH

©Huawei Technologies Co., Ltd. Huawei Industrial Base, Bantian, Longgang Shenzhen city Guangdong province China Tel: 0086-755-28780808 http://www.huawei.com/en/

Date:

June 3, 2016

From:

Huawei Technologies Co., Ltd.

To:

Walter E. Baker, SPC Auditor

Gradient Systems, Inc.

643 Bair Island Road. Suite 103 Redwood City, CA 94063

Subject: SPC-1 Letter of Good Faith for the Huawei OceanStor 2600 V3

Huawei Technologies Co., Ltd. is the SPC-1 Test Sponsor for the above listed product. To the best of our knowledge and belief, the required SPC-1 benchmark results and materials we have submitted for that product are complete, accurate, and in full compliance with V1.14 of the SPC-1 benchmark specification.

In addition, we have reported any items in the Benchmark Configuration and execution of the benchmark that affected the reported results even if the items are not explicitly required to be disclosed by the SPC-1 benchmark specification.

Signed:

Fan Ruigi

President of Storage Product Line

Date:

2-16.6.3

EXECUTIVE SUMMARY Page 10 of 78

EXECUTIVE SUMMARY

Test Sponsor and Contact Information

Test Sponsor and Contact Information				
Test Sponsor Primary Contact	Huawei Technologies Co., Ltd. – http://www.huawei.com/en/ Xu Zhong – xuzhong@huawei.com Huawei Chengdu Base No. 1899, Xiyuan Avenue Chengdu, 611731 P.R. China Phone: 86 28 65281927 FAX: 86 28 62282516			
Test Sponsor Alternate Contact	Huawei Technologies Co., Ltd. – http://www.huawei.com/en/ He Tao – hetao3@huawei.com/en/ Huawei Chengdu Base No. 1899, Xiyuan Avenue Chengdu, 611731 P.R. China Phone: 86 28 65281927 FAX: 86 28 62282516			
Auditor	Storage Performance Council – http://www.storageperformance.org Walter E. Baker – AuditService@StoragePerformance.org Gradient Systems, Inc. 643 Bair Island Road, Suite 211 Redwood City, CA 94063 Phone: (650) 556-9380 FAX: (650) 257-7511			

Revision Information and Key Dates

Revision Information and Key Dates			
SPC-1 Specification revision number	V1.14		
SPC-1 Workload Generator revision number	V2.3.0		
Date Results were first used publicly	December 20, 2016		
Date the FDR was submitted to the SPC	December 20, 2016		
Date the Priced Storage Configuration is available for shipment to customers	currently available		
Date the TSC completed audit certification	December 16, 2016		

EXECUTIVE SUMMARY Page 11 of 78

Tested Storage Product (TSP) Description

Huawei OceanStor 2600 V3 storage systems are storage products specifically designed for enterprise-class applications. Employing a storage operating system built on a cloud-oriented architecture, a powerful new hardware platform, and a suite of intelligent management software, the V3 storage systems deliver industry-leading functionality, performance, efficiency, reliability, and ease-of-use.

The V3 storage systems are ideal for applications such as midrange/large database Online Transaction Processing (OLTP)/Online Analytical Processing (OLAP), file sharing, and cloud computing. Further, these systems offer a wide range of efficient backup and disaster recovery solutions.

With a versatile set of capabilities, the V3 storage systems can be widely applied in industries ranging from government, finance, telecommunications, to energy.

EXECUTIVE SUMMARY Page 12 of 78

Summary of Results

SPC-1 Reported Data				
Tested Storage Product (TSP) Name: Huawei OceanStor™ 2600 V3				
Metric Reported Result				
SPC-1 IOPS™	100,493.48			
SPC-1 Price-Performance™	\$0.26/SPC-1 IOPS™			
Total ASU Capacity	2,093.797 GB			
Data Protection Level	Protected 2 (Mirroring)			
Total Price	\$26,534.48			
Currency Used	U.S. Dollars			
Target Country for availability, sales and support	USA			

SPC-1 IOPSTM represents the maximum I/O Request Throughput at the 100% load point.

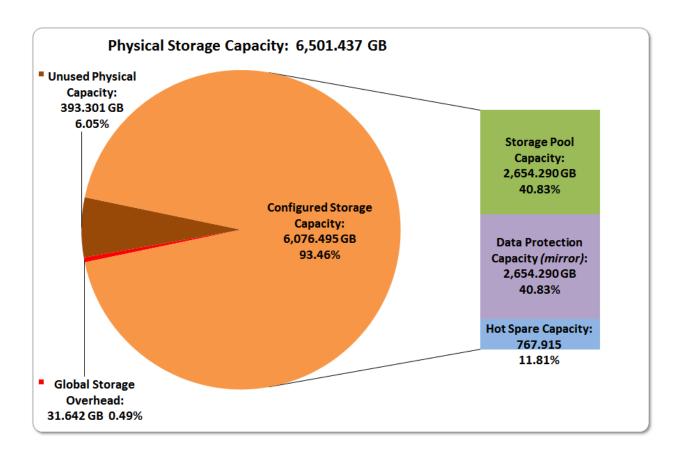
SPC-1 Price-Performance™ is the ratio of Total Price to SPC-1 IOPS™.

Total ASU (Application Storage Unit) **Capacity** represents the total storage capacity available to be read and written in the course of executing the SPC-1 benchmark.

A **Data Protection Level** of **Protected 2** using *Mirroring* configures two or more identical copies of user data.

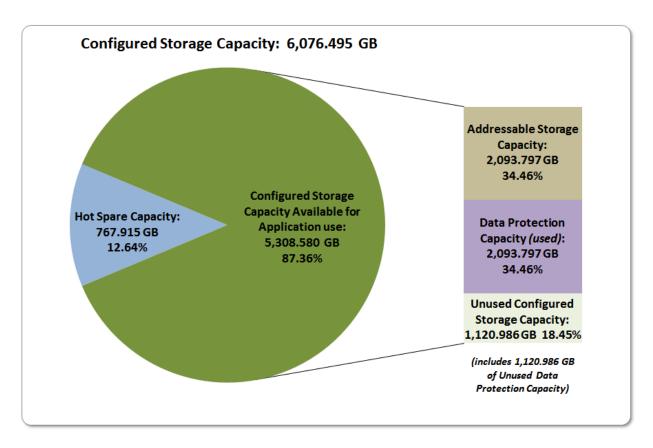
Protected 2: The single point of failure of any **component** in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

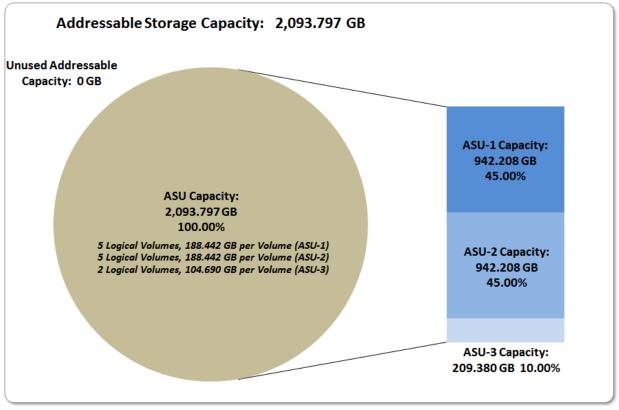
Total Price includes the cost of the Priced Storage Configuration plus three years of hardware maintenance and software support as detailed on page 17.

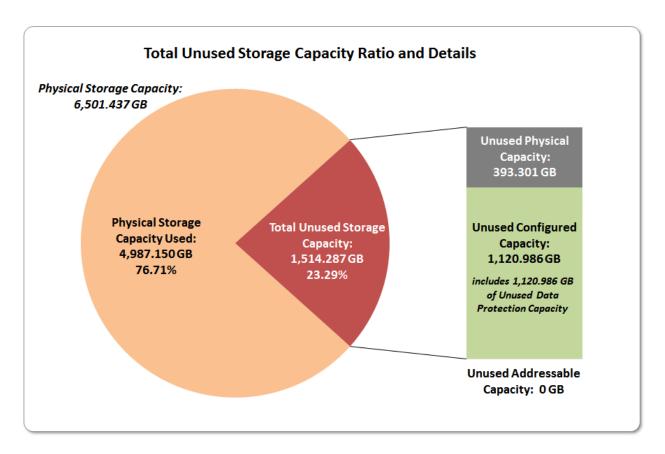

Currency Used is formal name for the currency used in calculating the **Total Price** and **SPC-1 Price-Performance**TM. That currency may be the local currency of the **Target** Country or the currency of a difference country (non-local currency).

The **Target Country** is the country in which the Priced Storage Configuration is available for sale and in which the required hardware maintenance and software support is provided either directly from the Test Sponsor or indirectly via a third-party supplier.

EXECUTIVE SUMMARY Page 13 of 78


Storage Capacities, Relationships, and Utilization


The following four charts and table document the various storage capacities, used in this benchmark, and their relationships, as well as the storage utilization values required to be reported.


Submission Identifier: A00182

EXECUTIVE SUMMARY Page 14 of 78

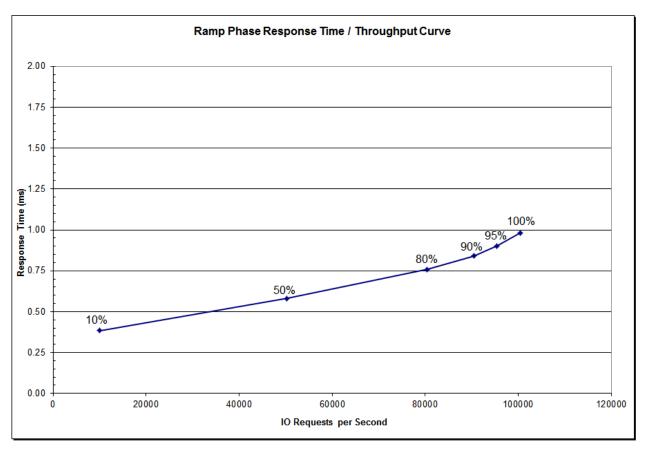
EXECUTIVE SUMMARY Page 15 of 78

SPC-1 Storage Capacity Utilization				
Application Utilization	32.21%			
Protected Application Utilization	64.41%			
Unused Storage Ratio	23.29%			

Application Utilization: Total ASU Capacity (2,093.797 GB) divided by Physical Storage Capacity (6,501,437 GB).

Protected Application Utilization: (Total ASU Capacity (2,093.797 GB) plus total Data Protection Capacity (2,654,290GB) minus unused Data Protection Capacity (560.493 GB)) divided by Physical Storage Capacity (6,501,437 GB).

Unused Storage Ratio: Total Unused Capacity (1,514.287 GB) divided by Physical Storage Capacity (6,501,437 GB) and may not exceed 45%.


Detailed information for the various storage capacities and utilizations is available on pages 29-30.

EXECUTIVE SUMMARY Page 16 of 78

Response Time - Throughput Curve

The Response Time-Throughput Curve illustrates the Average Response Time (milliseconds) and I/O Request Throughput at 100%, 95%, 90%, 80%, 50%, and 10% of the workload level used to generate the SPC-1 IOPS™ metric.

The Average Response Time measured at any of the above load points cannot exceed 30 milliseconds or the benchmark measurement is invalid.

Response Time - Throughput Data

	10% Load	50% Load	80% Load	90% Load	95% Load	100% Load
I/O Request Throughput	10,047.44	50,257.02	80,420.32	90,443.44	95,439.71	100,493.48
Average Response Time (ms):						
All ASUs	0.38	0.58	0.76	0.84	0.90	0.98
ASU-1	0.39	0.61	0.80	0.88	0.94	1.01
ASU-2	0.40	0.63	0.82	0.90	0.96	1.03
ASU-3	0.37	0.50	0.65	0.73	0.80	0.89
Reads	0.42	0.73	0.97	1.05	1.10	1.16
Writes	0.36	0.48	0.62	0.71	0.77	0.87

EXECUTIVE SUMMARY Page 17 of 78

Priced Storage Configuration Pricing

No.	Model	Description	Qty	Unit Price(\$)	Total Price(\$)
1	Phase				
1.1	Location				
1.1.1	2600 V3 Storage	System			
1.1.1.1	Control Module				
	26V3I-S-64G-AC	2600 V3(2U,Dual Ctrl,AC,64GB,2*6*GE,25*2.5",SPE23C0225)	1	7213.44	7,213.44
1.1.1.2	Hard Disk Drives				
	26V3-S-SSD400	400GB SSD Disk Unit(2.5")	16	639.36	10,229.76
1.1.1.3	IO Interface				
	SMARTIO8FC	4 port SmartIO I/O module(SFP+,8Gb FC)	2	665.04	1,330.08
1.1.1.4	Accessory				
	SN2F01FCPC	Patch Cord,DLC/PC,DLC/PC,Multi-mode,3m,A1a.2,2mm,42mm	4	11.00	44.00
1.1.1.5	НВА				
	N8GHBA000 QLOGIC QLE2562 HBA Card,PCIE,8Gbps DualPort ,Fiber Channel Multimode LC Optic Interface,English Manual, No Drive CD		2	1000.00	2,000.00
1.1.1.6	Storage Softwar	e			
	LIC-26V3I-BS	Basic Software License for Block(Include Device Management,SmartThin,SmartMultiTenant,SmartMigration,SmartErase,SmartMotion,SmartConfig,Ultrapath,CloudService)	1	624.00	624.00
Total of	f Product				21,441.28
1.1.1.8	Maintenance Su	pport Service			
	88125ESH	OceanStor 2600 V3 Installation Service - Engineering	1	1424.50	1,424.50
	02350SJE-	2600 V3(2U,Dual Ctrl,AC,64GB,2*6*GE,25*2.5",SPE23C0225)-Hi-		2252.25	2 2 2 2 2 2
	88134ULF-3	Care Onsite Premier 24x7x4H Engineer Onsite Service-3Year(s)	1	3259.20	3,259.20
	88033NKH- 88134UHK-3	Basic Software License for Block-Hi-Care Application Software Upgrade Support Service-3Year(s)	1	409.50	409.50
Total of	f Service (3 years)				5,093.20
Total Pi	rice				26,534.48

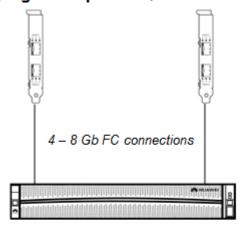
Submission Identifier: A00182

EXECUTIVE SUMMARY Page 18 of 78

Huawei Technologies Co., Ltd. only sells its products to third-party resellers, who in turn, sell those products to U.S. customers. The above pricing, which also includes the required three-year maintenance and support, was obtained from one of those third-party resellers. See page 77 (Appendix F: Third-Party Quotation) for a copy of the third-party reseller quotation.

The above pricing includes hardware maintenance and software support for three years, 7 days per week, 24 hours per day. The hardware maintenance and software support provides the following:

- Acknowledgement of new and existing problems within four (4) hours.
- Onsite presence of a qualified maintenance engineer or provision of a customer replaceable part within four (4) hours of the above acknowledgement for any hardware failure that results in an inoperative Price Storage Configuration that can be remedied by the repair or replacement of a Priced Storage Configuration component.


Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration

There were no differences between the Tested Storage Configuration and the Priced Storage Configuration.

EXECUTIVE SUMMARY Page 19 of 78

Priced Storage Configuration Diagram

2 - QLogic dual-ported QLE2562 FC HBAs

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
 - 1 Engine with 2 – Active-Active Controllers
 - 64 GB cache (32 GB per controller)
 - 2 4-port 8Gb Smart I/O modules (FC) (1 module per controller)
 - 4 "built-in" 12 Gb SAS ports (2 ports per controller)
 - 16-400GB 2.5" SSD drives

EXECUTIVE SUMMARY Page 20 of 78

Priced Storage Configuration Components

Priced Storage Configuration

OceanStor UltraPath

2 - QLogic QLE2562 dual-port, 8 Gbps, FC HBAs

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
- 2 Active-Active Controllers each controller includes:

32 GB cache (64 GB total)

- 1 4-port 8Gb Smart I/O module (FC) (2 modules total, 4 ports per controller (8 ports total and 4 ports used)
- 2 "built-in" 12Gbps SAS ports (4 ports total)

16 – 400 GB, 2.5" SSD drives

The major components used in the Benchmark Configuration/Tested Storage Configuration are documented in further detail on page <u>24</u>.

The Engine, Controller and FC Module relationships are documented on page 25.

The FC HBA/Controller Host Port FC connections are documented on page <u>26</u>.

In each of the following sections of this document, the appropriate Full Disclosure Report requirement, from the SPC-1 benchmark specification, is stated in italics followed by the information to fulfill the stated requirement.

CONFIGURATION INFORMATION

Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Diagram

Clause 9.4.3.4.1

A one page Benchmark Configuration (BC)/Tested Storage Configuration (TSC) diagram shall be included in the FDR...

The Benchmark Configuration (BC)/Tested Storage Configuration (TSC) is illustrated on page 22 (Benchmark Configuration/Tested Storage Configuration Diagram).

Storage Network Configuration

Clause 9.4.3.4.1

...

5. If the TSC contains network storage, the diagram will include the network configuration. If a single diagram is not sufficient to illustrate both the Benchmark Configuration and network configuration in sufficient detail, the Benchmark Configuration diagram will include a high-level network illustration as shown in Figure 9-8. In that case, a separate, detailed network configuration diagram will also be included as described in Clause 9.4.3.4.2.

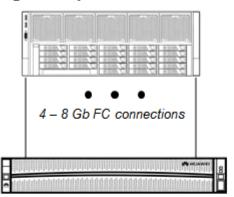
Clause 9.4.3.4.2

If a storage network was configured as a part of the Tested Storage Configuration and the Benchmark Configuration diagram described in Clause 9.4.3.4.1 contains a high-level illustration of the network configuration, the Executive Summary will contain a one page topology diagram of the storage network as illustrated in Figure 9-9.

The Tested Storage Configuration (TSC) was configured with direct-attached storage.

Host System(s) and Tested Storage Configuration (TSC) Table of Components

Clause 9.4.3.4.3


The FDR will contain a table that lists the major components of each Host System and the Tested Storage Configuration (TSC).

The Host System(s) and TSC table of components may be found on page <u>23</u> (<u>Host System</u> and Tested Storage Configuration Components).

Benchmark Configuration/Tested Storage Configuration Diagram

1 - Huawei FusionServer RH5885 V3 server

2 - QLogic dual-ported QLE2562 FC HBAs

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
 - 1 Engine with 2 – Active-Active Controllers

64 GB cache (32 GB per controller)

- 2 4-port 8Gb Smart I/O modules (FC) (1 module per controller)
- 4 "built-in" 12 Gb SAS ports (2 ports per controller)

16-400GB 2.5" SSD drives

Host System and Tested Storage Configuration Components

Host System

- 1 Huawei FusionServer RH5885 V3 server, with:
 - $4-\mbox{Intel} \mbox{\ensuremath{\mathbb{R}}}$ Xeon $\mbox{\ensuremath{\mathbb{R}}}$ 2.00 GHz processor E7-4820 V2 each with 8 cores, 16 MB cache

512 GB main memory

Red Hat Enterprise Linux Server release 7.0 x86_64 PCIe

Tested Storage Configuration

OceanStor UltraPath

2 - QLogic QLE2562 dual-port, 8 Gbps, FC HBAs

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
- 2 Active-Active Controllers each controller includes:

32 GB cache (64 GB total)

- 1 4-port 8Gb Smart I/O module (FC) (2 modules total, 4 ports per controller (8 ports total and 4 ports used)
- 2 "built-in" 12Gbps SAS ports (4 ports total)

16 – 400 GB, 2.5" SSD drives

The major components used in the Benchmark Configuration/Tested Storage Configuration are documented in further detail on page <u>24</u>.

The Host System, Engine, Controller and FC Module relationships are documented on page 25.

The Host System FC HBA/Controller Host Port FC connections are documented on page 26.

Benchmark Configuration/Tested Storage Configuration Major Components, Major Component Relationships and Connections

This section provides more detailed documentation of relationships between the major components, which comprised the Benchmark Configuration/Tested Storage Configuration, and connections between those components.

Benchmark Configuration/Tested Storage Configuration Major Components

The Benchmark Configuration/Tested Storage Configuration consisted of following major components:

- 1 Host System: Host System 1
- 2 FC HBAs (2 ports per HBA, 4 ports total)
 HBA0 HBA1 (arbitrary names for identification)
 4 8 Gb FC ports total

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
- 1 Engine: **CTE0**
- 2 Controllers: CTE0.0A, CTE0.0B
- 2 FC Host Port Modules: CTE0.0A.IOM0, CTE0.0B.IOM0
 - 1 Module per Controller ,4 ports per Module (**P0 P3**):

CTE0.0A:

CTE0.A.IOM0.P0

CTE0.A.IOM0.P1

CTE0.A.IOM0.P2

CTE0.A.IOM0.P3

CTE0.0B:

CTE0.B.IOM0.P0

CTE0.B.IOM0.P1

CTE0.B.IOM0.P2

CTE0.B.IOM0.P3

• 4 "Built-In" SAS Ports:

(used for connection to an external disk enclosure when present) 2 Ports per Controller,

CTE0.0A:

CTE0.A.EXP0, CTE0.A.EXP1

CTE0.0B:

CTE0.B.EXP0, CTE0.B.EXP1

• 16 – 400 GB 2.5" SSDs

Host System, Engine, Controller and FC Module Relationships

The relationships between the Host Systems, Engines, Controllers and FC Modules are listed below and illustrated in the following table.

- 1 Host System: Host System 1
- 2 FC HBAs (2 ports per HBA, 4 ports total)
 HBA0 HBA1 (arbitrary names for identification)
 4 8 Gb FC ports total

Huawei OceanStor™ 2600 V3

- 1 2U System Enclosure
- 1 Engine: **CTE0**
- 2 Controllers: CTE0.0A, CTE0.0B
- 2 FC Host Port Modules: CTE0.0A.IOM0, CTE0.0B.IOM0
 - 1 Module per Controller ,4 ports per Module (**P0 P3**):

CTE0.0A:

CTE0.A.IOM0.P0

CTE0.A.IOM0.P1

CTE0.A.IOM0.P2

CTE0.A.IOM0.P3

CTE0.0B:

CTE0.B.IOM0.P0

CTE0.B.IOM0.P1

CTE0.B.IOM0.P2

CTE0.B.IOM0.P3

Host			FC	FC
System	Engines	Controllers	Modules	Host Ports
1	CTE0	0A	IOM0	CTE0.A.IOM1.P0
				CTE0.A.IOM1.P1
				CTE0.A.IOM1.P2
				CTE0.A.IOM1.P3
		OB	IOM0	CTE0.B.IOM1.P0
				CTE0.B.IOM1.P1
				CTE0.B.IOM1.P2
				CTE0.B.IOM1.P3

Host System FC HBA/Controller Host Port FC Connections

The Host System has 2 FC HBA connections to each controller, as described below.

Host System 1

- **HBA0:** 2 HBA ports connected to any 2 ports in controller **0A**, FC module **CTE0.A.IOM0**.
- **HBA1:** 2 HBA ports connected to any 2 ports in controller **0B**, FC module **CTE0.B.IOM0.**

System Enclosure, Engine, Controller and SSD Relationships

Customer Tunable Parameters and Options

Clause 9.4.3.5.1

All Benchmark Configuration (BC) components with customer tunable parameter and options that have been altered from their default values must be listed in the FDR. The FDR entry for each of those components must include both the name of the component and the altered value of the parameter or option. If the parameter name is not self-explanatory to a knowledgeable practitioner, a brief description of the parameter's use must also be included in the FDR entry.

<u>Appendix B: Customer Tunable Parameters and Options</u> on page <u>70</u> contains the customer tunable parameters and options that have been altered from their default values for this benchmark.

Tested Storage Configuration (TSC) Description

Clause 9.4.3.5.2

The FDR must include sufficient information to recreate the logical representation of the TSC. In addition to customer tunable parameters and options (Clause 4.2.4.5.3), that information must include, at a minimum:

- A diagram and/or description of the following:
 - > All physical components that comprise the TSC. Those components are also illustrated in the BC Configuration Diagram in Clause 9.2.4.4.1 and/or the Storage Network Configuration Diagram in Clause 9.2.4.4.2.
 - > The logical representation of the TSC, configured from the above components that will be presented to the Workload Generator.
- Listings of scripts used to create the logical representation of the TSC.
- If scripts were not used, a description of the process used with sufficient detail to recreate the logical representation of the TSC.

<u>Appendix C: Tested Storage Configuration (TSC) Creation</u> on page <u>71</u> contains the detailed information that describes how to create and configure the logical TSC.

SPC-1 Workload Generator Storage Configuration

Clause 9.4.3.5.3

The FDR must include all SPC-1 Workload Generator storage configuration commands and parameters.

The SPC-1 Workload Generator storage configuration commands and parameters for this measurement appear in <u>Appendix D: SPC-1 Workload Generator Storage Commands and Parameters</u> on page <u>75</u>.

ASU Pre-Fill

Clause 5.3.3.1

Each of the three SPC-1 ASUs (ASU-1, ASU-2 and ASU-3) is required to be completely filled with specified content prior to the execution of audited SPC-1 Tests. The content is required to consist of random data pattern such as that produced by an SPC recommended tool.

The configuration file used to complete the required ASU pre-fill appears in <u>Appendix</u> D: SPC-1 Workload Generator Storage Commands and Parameters on page 75.

DATA REPOSITORY Page 29 of 78

SPC-1 DATA REPOSITORY

This portion of the Full Disclosure Report presents the detailed information that fully documents the various SPC-1 storage capacities and mappings used in the Tested Storage Configuration. SPC-1 Data Repository Definitions on page 66 contains definitions of terms specific to the SPC-1 Data Repository.

Storage Capacities and Relationships

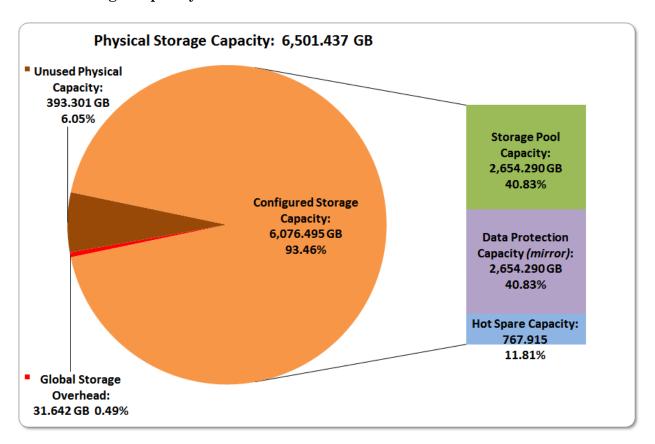
Clause 9.4.3.6.1

Two tables and four charts documenting the storage capacities and relationships of the SPC-1 Storage Hierarchy (Clause 2.1) shall be included in the FDR. ... The capacity value in each chart may be listed as an integer value, for readability, rather than the decimal value listed in the table below.

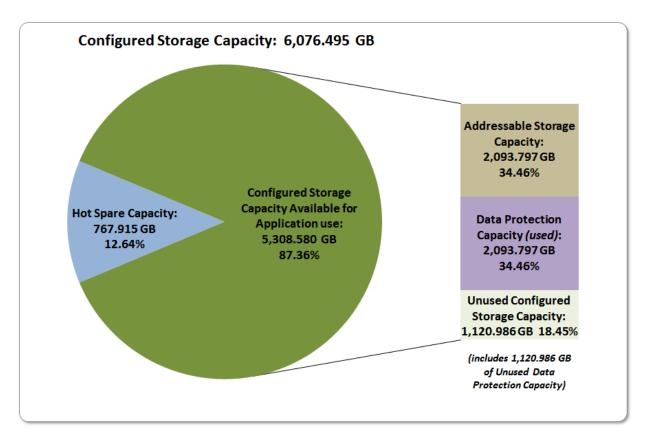
SPC-1 Storage Capacities

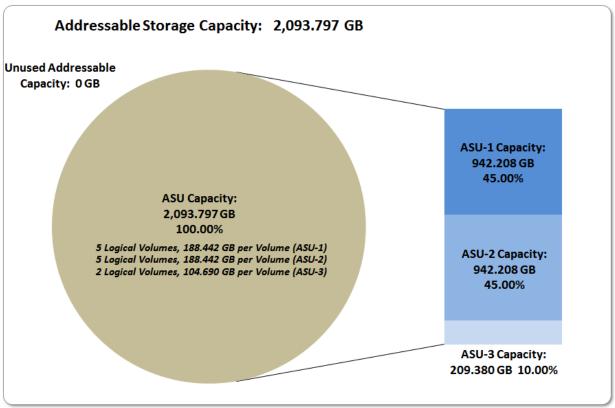
The Physical Storage Capacity consisted of 6,501.437 GB distributed over 16 solid state drives (SSDs) each with a formatted capacity of 406.340 GB. There was 393.301 GB (6.05%) of Unused Storage within the Physical Storage Capacity. Global Storage Overhead consisted of 31.642 GB (0.49%) of the Physical Storage Capacity. There was 1,514.287 GB (18.45%) of Unused Storage within the Configured Storage Capacity. The Total ASU Capacity utilized 100% of the Addressable Storage Capacity resulting in 0.00 GB (0.00%) of Unused Storage within the Addressable Storage Capacity. The Data Protection (*Mirroring*) capacity was 2,654.290 GB of which 2,093.797 GB was utilized. The total Unused Storage capacity was 1,514.287 GB.

Note: The configured Storage Devices may include additional storage capacity reserved for system overhead, which is not accessible for application use. That storage capacity may not be included in the value presented for Physical Storage Capacity.


SPC-1 Storage Capacities				
Storage Hierarchy Component	Units	Capacity		
Total ASU Capacity	Gigabytes (GB)	2,093.797		
Addressable Storage Capacity	Gigabytes (GB)	2,093.797		
Configured Storage Capacity	Gigabytes (GB)	6,076.495		
Physical Storage Capacity	Gigabytes (GB)	6,501.437		
Data Protection (Mirroring)	Gigabytes (GB)	2,654.290		
Required Storage (sparing)	Gigabytes (GB)	767.915		
Global Storage Overhead	Gigabytes (GB)	31.642		
Total Unused Storage	Gigabytes (GB)	1,514.287		

Data Repository Page 30 of 78


SPC-1 Storage Hierarchy Ratios


	Addressable Storage Capacity	Configured Storage Capacity	Physical Storage Capacity
Total ASU Capacity	100.00%	34.46%	31.21%
Required for Data Protection (Mirroring)		43.68%	40.83%
Addressable Storage Capacity		34.46%	32.21%
Required Storage (sparing)		12.64%	11.81%
Configured Storage Capacity			93.46%
Global Storage Overhead			0.49%
Unused Storage:			
Addressable	0.00%		
Configured		18.45%	
Physical			6.05%

SPC-1 Storage Capacity Charts

Data Repository Page 31 of 78

DATA REPOSITORY Page 32 of 78

Storage Capacity Utilization

Clause 9.4.3.6.2

The FDR will include a table illustrating the storage capacity utilization values defined for Application Utilization (Clause 2.8.1), Protected Application Utilization (Clause 2.8.2), and Unused Storage Ratio (Clause 2.8.3).

Clause 2.8.1

Application Utilization is defined as Total ASU Capacity divided by Physical Storage Capacity.

Clause 2.8.2

Protected Application Utilization is defined as (Total ASU Capacity plus total Data Protection Capacity minus unused Data Protection Capacity) divided by Physical Storage Capacity.

Clause 2.8.3

Unused Storage Ratio is defined as Total Unused Capacity divided by Physical Storage Capacity and may not exceed 45%.

SPC-1 Storage Capacity Utilization			
Application Utilization	32.21%		
Protected Application Utilization	64.41%		
Unused Storage Ratio	23.29%		

DATA REPOSITORY Page 33 of 78

Logical Volume Capacity and ASU Mapping

Clause 9.4.3.6.3

A table illustrating the capacity of each ASU and the mapping of Logical Volumes to ASUs shall be provided in the FDR. ... Logical Volumes shall be sequenced in the table from top to bottom per its position in the contiguous address space of each ASU. The capacity of each Logical Volume shall be stated. ... In conjunction with this table, the Test Sponsor shall provide a complete description of the type of data protection (see Clause 2.7) used on each Logical Volume.

Logical Volume Capacity and Mapping

ASU-1 (942.208 GB)

5 Logical Volumes 188.442 GB per Logical Volume (188.442 GB used per Logical Volume)

ASU-2 (942.208 GB)

5 Logical Volumes 188.442 GB per Logical Volume (188.442 GB used per Logical Volume)

ASU-3 (209.380 GB)

2 Logical Volumea 104.690 GB per Logical Volume (104.690 GB used per Logical Volume)

The Data Protection Level used for all Logical Volumes was <u>Protected 2</u> using *Mirroring* as described on page <u>12</u>. See "ASU Configuration" in the <u>IOPS Test Results File</u> for more detailed configuration information.

SPC-1 BENCHMARK EXECUTION RESULTS

This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs. An <u>SPC-1 glossary</u> on page 66 contains definitions of terms specific to the SPC-1 Tests, Test Phases, and Test Runs.

Clause 5.4.3

The Tests must be executed in the following sequence: Primary Metrics, Repeatability, and Data Persistence. That required sequence must be uninterrupted from the start of Primary Metrics to the completion of Persistence Test Run 1. Uninterrupted means the Benchmark Configuration shall not be power cycled, restarted, disturbed, altered, or adjusted during the above measurement sequence. If the required sequence is interrupted other than for the Host System/TSC power cycle between the two Persistence Test Runs, the measurement is invalid.

SPC-1 Tests, Test Phases, and Test Runs

The SPC-1 benchmark consists of the following Tests, Test Phases, and Test Runs:

Primary Metrics Test

- Sustainability Test Phase and Test Run
- > IOPS Test Phase and Test Run
- > Response Time Ramp Test Phase
 - o 95% of IOPS Test Run
 - o 90% of IOPS Test Run
 - 。 80% of IOPS Test Run
 - 50% of IOPS Test Run
 - 10% of IOPS Test Run (LRT)

Repeatability Test

- > Repeatability Test Phase 1
 - 10% of IOPS Test Run (LRT)
 - o IOPS Test Run
- Repeatability Test Phase 2
 - o 10% of IOPS Test Run (LRT)
 - o IOPS Test Run

• Data Persistence Test

- Data Persistence Test Run 1
- > Data Persistence Test Run 2

Each Test is an atomic unit that must be executed from start to finish before any other Test, Test Phase, or Test Run may be executed.

The results from each Test, Test Phase, and Test Run are listed below along with a more detailed explanation of each component.

Submitted for Review: DECEMBER 20, 2016

"Ramp-Up" Test Runs

Clause 5.3.13

In order to warm-up caches or perform the initial ASU data migration in a multi-tier configuration, a Test Sponsor may perform a series of "Ramp-Up" Test Runs as a substitute for an initial, gradual Ramp-Up.

Clause 5.3.13.4

The "Ramp-Up" Test Runs will immediately precede the Primary Metrics Test as part of the uninterrupted SPC-1 measurement sequence.

Clause 9.4.3.7.1

If a series of "Ramp-Up" Test Runs were included in the SPC-1 measurement sequence, the FDR shall report the duration (ramp-up and measurement interval), BSU level, SPC-1 IOPS and average response time for each "Ramp-Up" Test Run in an appropriate table.

There were no "Ramp-Up" Test Runs executed.

Primary Metrics Test - Sustainability Test Phase

Clause 5.4.4.1.1

The Sustainability Test Phase has exactly one Test Run and shall demonstrate the maximum sustainable I/O Request Throughput within at least a continuous eight (8) hour Measurement Interval. This Test Phase also serves to insure that the TSC has reached Steady State prior to reporting the final maximum I/O Request Throughput result (SPC-1 IOPS $^{\text{TM}}$).

Clause 5.4.4.1.2

The computed I/O Request Throughput of the Sustainability Test must be within 5% of the reported SPC-1 IOPSTM result.

Clause 5.4.4.1.4

The Average Response Time, as defined in Clause 5.1.1, will be computed and reported for the Sustainability Test Run and cannot exceed 30 milliseconds. If the Average Response time exceeds that 30-milliseconds constraint, the measurement is invalid.

Clause 9.4.3.7.2

For the Sustainability Test Phase the FDR shall contain:

- 1. A Data Rate Distribution graph and data table.
- 2. I/O Request Throughput Distribution graph and data table.
- 3. A Response Time Frequency Distribution graph and table.
- 4. An Average Response Time Distribution graph and table.
- 5. The human readable Test Run Results File produced by the Workload Generator (may be included in an appendix).
- 6. A listing or screen image of all input parameters supplied to the Workload Generator (may be included in an appendix).
- 7. The Measured Intensity Multiplier for each I/O stream.
- 8. The variability of the Measured Intensity Multiplier, as defined in Clause 5.3.13.3.

Submitted for Review: DECEMBER 20, 2016

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix E: SPC-1 Workload Generator Input Parameters</u> on Page <u>76</u>.

Sustainability Test Results File

A link to the test results file generated from the Sustainability Test Run is listed below.

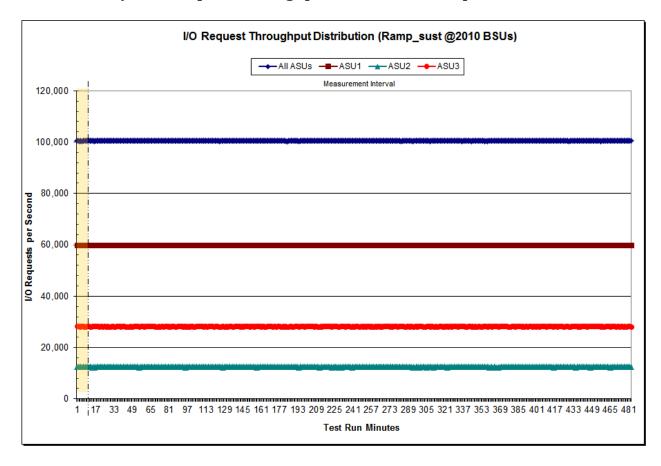

Sustainability Test Results File

Sustainability - Data Rate Distribution Data (MB/second)

The Sustainability Data Rate table of data is not embedded in this document due to its size. The table is available via the following URL:

Sustainability Data Rate Table

Sustainability - Data Rate Distribution Graph

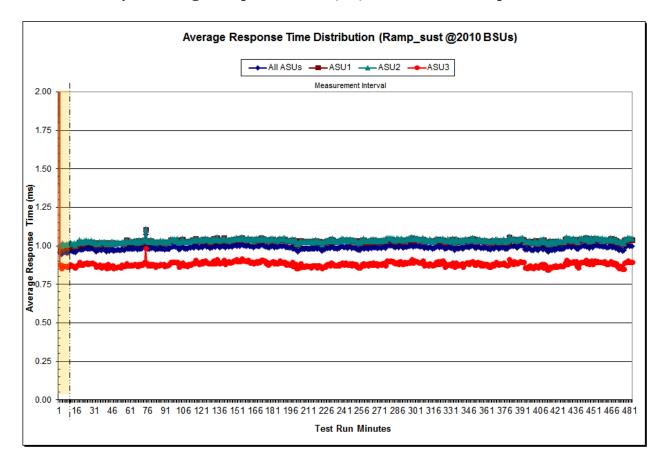

Submitted for Review: DECEMBER 20, 2016

Sustainability - I/O Request Throughput Distribution Data

The Sustainability I/O Request Throughput table of data is not embedded in this document due to its size. The table is available via the following URL:

Sustainability I/O Request Throughput Table

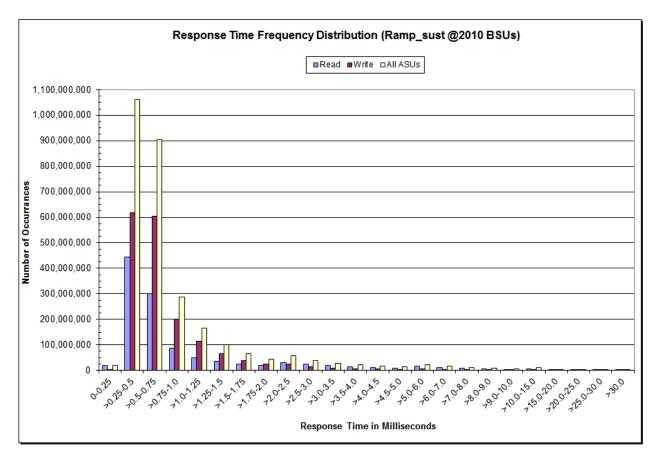
Sustainability - I/O Request Throughput Distribution Graph


Submitted for Review: DECEMBER 20, 2016

Sustainability - Average Response Time (ms) Distribution Data

The Sustainability Average Response Time table of data is not embedded in this document due to its size. The table is available via the following URL:

Sustainability Average Response Time Table


Sustainability - Average Response Time (ms) Distribution Graph

Sustainability - Response Time Frequency Distribution Data

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	19,868,986	443,386,307	301,175,639	85,989,934	50,400,313	34,467,578	25,143,742	19,788,565
Write	31,125	618,527,585	602,929,787	200,664,811	114,019,632	66,602,039	39,060,909	23,788,689
All ASUs	19,900,111	1,061,913,892	904,105,426	286,654,745	164,419,945	101,069,617	64,204,651	43,577,254
ASU1	17,713,214	667,269,337	501,389,859	155,530,170	90,559,472	57,027,636	37,541,495	26,606,052
ASU2	2,167,036	126,829,725	112,133,304	34,679,848	19,559,941	12,223,559	7,969,767	5,582,134
ASU3	19,861	267,814,830	290,582,263	96,444,727	54,300,532	31,818,422	18,693,389	11,389,068
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	30,732,100	24,410,737	18,699,613	14,195,825	11,538,224	9,749,466	15,617,743	11,680,101
Write	25,867,530	13,807,325	9,007,141	6,717,027	5,193,889	4,173,720	5,977,272	4,122,783
All ASUs	56,599,630	38,218,062	27,706,754	20,912,852	16,732,113	13,923,186	21,595,015	15,802,884
ASU1	36,669,540	26,273,747	19,455,639	14,766,164	11,902,669	9,963,735	15,631,324	11,501,258
ASU2	7,590,257	5,401,232	4,009,106	2,990,192	2,385,255	1,984,938	3,101,003	2,278,597
ASU3	12,339,833	6,543,083	4,242,009	3,156,496	2,444,189	1,974,513	2,862,688	2,023,029
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	8,446,650	5,816,465	3,841,040	5,912,761	524,375	60,491	10,763	4,083
Write	3,013,777	2,273,189	1,723,479	4,201,008	990,735	209,401	46,251	18,149
All ASUs	11,460,427	8,089,654	5,564,519	10,113,769	1,515,110	269,892	57,014	22,232
ASU1	8,290,195	5,755,401	3,867,881	6,452,703	777,522	122,179	24,265	9,642
ASU2	1,651,461	1,152,008	776,974	1,311,098	160,476	25,193	5,023	2,039
ASU3	1,518,771	1,182,245	919,664	2,349,968	577,112	122,520	27,726	10,551

Sustainability - Response Time Frequency Distribution Graph

Submitted for Review: DECEMBER 20, 2016

Sustainability - Measured Intensity Multiplier and Coefficient of Variation

<u>Clause 3.4.</u>3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001

Primary Metrics Test - IOPS Test Phase

Clause 5.4.4.2

The IOPS Test Phase consists of one Test Run at the 100% load point with a Measurement Interval of ten (10) minutes. The IOPS Test Phase immediately follows the Sustainability Test Phase without any interruption or manual intervention.

The IOPS Test Run generates the SPC-1 IOPSTM primary metric, which is computed as the I/O Request Throughput for the Measurement Interval of the IOPS Test Run.

The Average Response Time is computed for the IOPS Test Run and cannot exceed 30 milliseconds. If the Average Response Time exceeds the 30 millisecond constraint, the measurement is invalid.

Clause 9.4.3.7.3

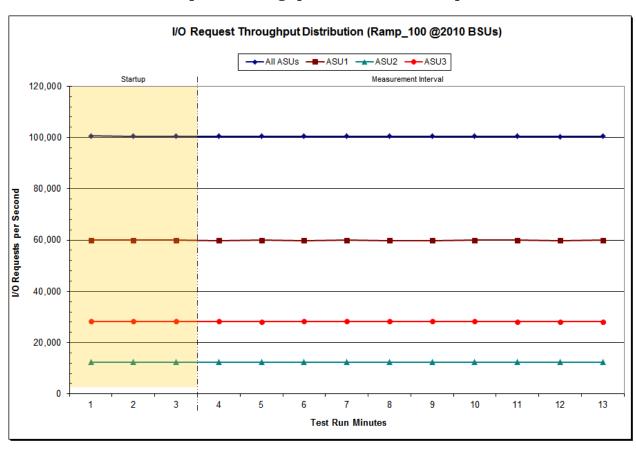
For the IOPS Test Phase the FDR shall contain:

- 1. I/O Request Throughput Distribution graph and data table.
- 2. A Response Time Frequency Distribution graph and data table.
- 3. An Average Response Time Distribution graph and data table.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied to the Workload Generator.
- 6. The total number of I/O Requests completed in the Measurement Interval as well as the number of I/O Requests with a Response Time less than or equal to 30 milliseconds and the number of I/O Requests with a Response Time greater than 30 milliseconds.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix E: SPC-1 Workload Generator Input Parameters</u> on Page 76.

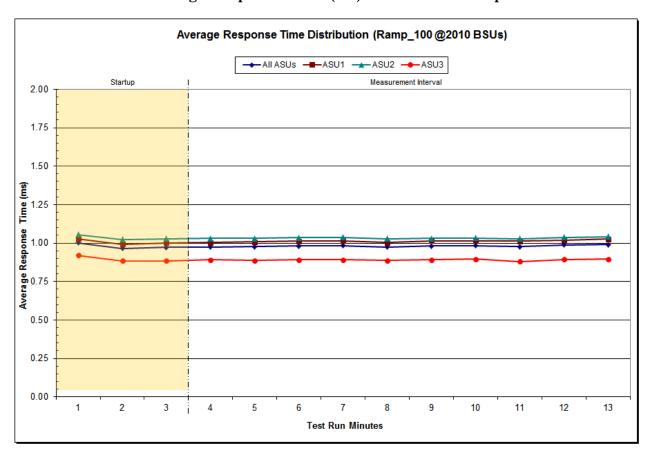
IOPS Test Results File


A link to the test results file generated from the IOPS Test Run is listed below.

IOPS Test Results File

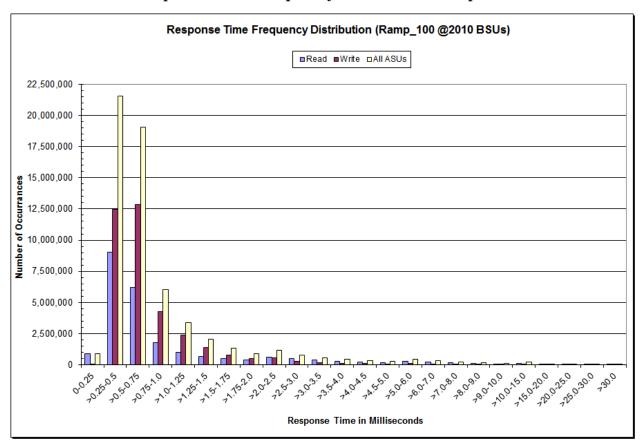
IOPS Test Run - I/O Request Throughput Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	6:40:52	6:43:53	0-2	0:03:01
Measurement Interval	6:43:53	6:53:53	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	100,565.85	59,941.38	12,343.08	28,281.38
1	100,525.18	59,915.70	12,375.47	28,234.02
2	100,500.43	59,900.88	12,354.52	28,245.03
3	100,495.18	59,874.00	12,370.32	28,250.87
4	100,485.88	59,918.42	12,342.82	28,224.65
5	100,506.60	59,873.75	12,354.32	28,278.53
6	100,530.48	59,907.77	12,360.83	28,261.88
7	100,483.18	59,880.57	12,364.73	28,237.88
8	100,486.77	59,880.93	12,357.37	28,248.47
9	100,548.28	59,969.03	12,343.48	28,235.77
10	100,490.22	59,899.22	12,375.97	28,215.03
11	100,390.77	59,812.10	12,359.07	28,219.60
12	100,517.47	59,922.67	12,398.30	28,196.50
A verage	100,493.48	59,893.85	12,362.72	28,236.92


IOPS Test Run - I/O Request Throughput Distribution Graph

IOPS Test Run - Average Response Time (ms) Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	6:40:52	6:43:53	0-2	0:03:01
Measurement Interval	6:43:53	6:53:53	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	1.00	1.03	1.06	0.92
1	0.97	0.99	1.02	0.88
2	0.97	1.00	1.03	0.89
3	0.98	1.00	1.03	0.89
4	0.98	1.01	1.03	0.89
5	0.98	1.01	1.04	0.89
6	0.98	1.01	1.04	0.89
7	0.97	1.00	1.03	0.89
8	0.98	1.01	1.03	0.89
9	0.98	1.01	1.03	0.90
10	0.98	1.01	1.03	0.88
11	0.99	1.02	1.04	0.89
12	0.99	1.03	1.04	0.90
Average	0.98	1.01	1.03	0.89


IOPS Test Run - Average Response Time (ms) Distribution Graph

IOPS Test Run -Response Time Frequency Distribution Data

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	874,673	9,054,814	6,208,978	1,786,556	1,023,459	691,929	503,684	397,533
Write	889	12,484,881	12,834,428	4,256,313	2,390,707	1,382,227	809,880	495,703
All ASUs	875,562	21,539,695	19,043,406	6,042,869	3,414,166	2,074,156	1,313,564	893,236
ASU1	811,108	13,564,075	10,501,964	3,255,989	1,865,819	1,160,834	761,531	540,338
ASU2	63,913	2,585,064	2,370,163	734,527	408,033	251,992	164,800	115,940
ASU3	541	5,390,556	6,171,279	2,052,353	1,140,314	661,330	387,233	236,958
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	622,396	496,476	378,532	284,879	231,577	193,510	309,084	230,388
Write	550,996	298,199	193,662	142,469	109,212	87,413	125,833	85,972
All ASUs	1,173,392	794,675	572,194	427,348	340,789	280,923	434,917	316,360
ASU1	751,358	539,785	396,660	298,611	239,706	198,950	311,102	227,912
ASU2	159,197	113,468	84,001	61,527	49,333	40,684	63,331	46,437
ASU3	262,837	141,422	91,533	67,210	51,750	41,289	60,484	42,011
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	166,666	115,017	76,635	120,312	11,656	1,457	383	114
Write	62,701	47,687	36,948	89,186	22,643	5,073	1,698	509
All ASUs	229,367	162,704	113,583	209,498	34,299	6,530	2,081	623
ASU1	164,044	114,626	77,867	132,222	17,494	3,004	951	275
ASU2	33,690	23,380	16,141	27,419	3,677	627	216	47
ASU3	31,633	24,698	19,575	49,857	13,128	2,899	914	301

IOPS Test Run -Response Time Frequency Distribution Graph

Submitted for Review: DECEMBER 20, 2016

IOPS Test Run – I/O Request Information

I/O Requests Completed in the Measurement Interval						
60,295,937						
I/O Requests Completed with Response Time = or < 30 ms						
60,295,314						
I/O Requests Completed with Response Time > 30 ms						
623						

IOPS Test Run - Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2099	0.0180	0.0700	0.0350	0.2810
COV	0.002	0.000	0.001	0.001	0.003	0.001	0.003	0.001

Primary Metrics Test - Response Time Ramp Test Phase

Clause 5.4.4.3

The Response Time Ramp Test Phase consists of five Test Runs, one each at 95%, 90%, 80%, 50%, and 10% of the load point (100%) used to generate the SPC-1 IOPSTM primary metric. Each of the five Test Runs has a Measurement Interval of ten (10) minutes. The Response Time Ramp Test Phase immediately follows the IOPS Test Phase without any interruption or manual intervention.

The five Response Time Ramp Test Runs, in conjunction with the IOPS Test Run (100%), demonstrate the relationship between Average Response Time and I/O Request Throughput for the Tested Storage Configuration (TSC) as illustrated in the response time/throughput curve on page 16.

In addition, the Average Response Time measured during the 10% Test Run is the value for the SPC-1 LRT^{IM} metric. That value represents the Average Response Time of a lightly loaded TSC.

Clause 9.4.3.7.4

The following content shall appear in the FDR for the Response Time Ramp Phase:

- 1. A Response Time Ramp Distribution graph.
- 2. The human readable Test Run Results File produced by the Workload Generator for each Test Run within the Response Time Ramp Test Phase.
- 3. For the 10% Load Level Test Run (SPC-1 LRTTM metric) an Average Response Time Distribution graph and table.
- 4. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> E: SPC-1 Workload Generator Input Parameters on Page 76.

Response Time Ramp Test Results File

A link to each test result file generated from each Response Time Ramp Test Run list listed below.

95% Load Level

90% Load Level

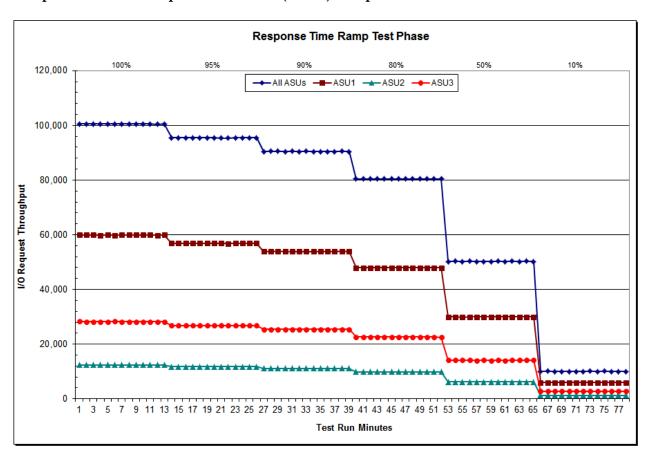
80% Load Level

50% Load Level

10% Load Level

Submitted for Review: DECEMBER 20, 2016

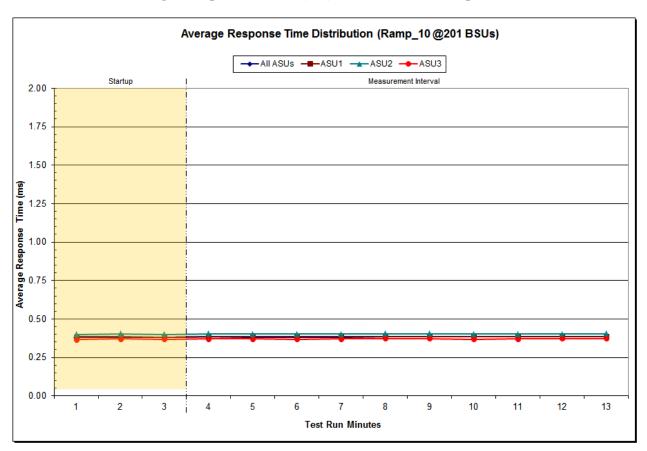
Response Time Ramp Distribution (IOPS) Data


The five Test Runs that comprise the Response Time Ramp Phase are executed at 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit (BSU) load level used to produce the SPC-1 IOPSTM primary metric. The 100% BSU load level is included in the following Response Time Ramp data table and graph for completeness.

100% Load Level:					95% Load Level:	ĺ		İ	
4,020 BSUs	Start	Stop	Interval	Duration	1,909 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	6:40:52	6:43:53	0-3	0:03:01	Start-Up/Ramp-Up	6:53:57	6:56:58	0-3	0:03:01
Measurement Interval	6:43:53	6:53:53	3-12	0:10:00	Measurement Interval	6:56:58	7:06:58	3-12	0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	100,565.85	59,941.38	12,343.08	28,281.38	0	95,511.65	56,938.02	11,742.03	26,831.60
1	100,525.18	59,915.70	12,375.47	28,234.02	1	95,407.58	56,857.28	11,731.48	26,818.82
2	100,500.43	59,900.88	12,354.52	28,245.03	2	95,472.62	56,903.37	11,741.50	26,827.75
3	100,495.18	59,874.00	12,370.32	28,250.87	3	95,446.22	56,867.00	11,727.02	26,852.20
4	100,485.88	59,918.42	12,342.82	28,224.65	4	95,457.18	56,883.53	11,740.05	26,833.60
5	100,506.60	59,873.75	12,354.32	28,278.53	5	95,483.30	56,902.83	11,751.63	26,828.83
6	100,530.48	59,907.77	12,360.83	28,261.88	6	95,460.30	56,914.38	11,726.70	26,819.22
7	100,483.18	59,880.57	12,364.73	28,237.88	7	95,398.88	56,876.50	11,753.62	26,768.77
8	100,486.77	59,880.93	12,357.37	28,248.47	8	95,350.43	56,805.13	11,717.77	26,827.53
9	100,548.28	59,969.03	12,343.48	28,235.77	9	95,430.12	56,883.63	11,733.43	26,813.05
10	100,490.22	59,899.22	12,375.97	28,215.03	10	95,474.08	56,881.65	11,746.80	26,845.63
11	100,390.77	59,812.10	12,359.07	28,219.60	11	95,476.38	56,899.83	11,736.47	26,840.08
12	100,517.47	59,922.67	12,398.30	28,196.50	12	95,420.23	56,892.42	11,735.37	26,792.45
A verage	100,493.48	59,893.85	12,362.72	28,236.92	A verage	95,439.71	56,880.69	11,736.89	26,822.14
90% Load Level:	_	_			80% Load Level:	_	_		
1,809 BSUs	Start	Stop	Interval	Duration	1,608 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up Measurement Interval	7:07:01 7:10:02	7:10:02 7:20:02	0-3 3-12		Start-Up/Ramp-Up Measurement Interval	7:20:05 7:23:06	7:23:06 7:33:06	0-3 3-12	0:03:01 0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	90,422.20	53,897.80	11,143.23	25,381.17	0	80,461.17	47,955.37	9,902.72	22,603.08
1	90,505.75	53,920.65	11,131.85	25,453.25	1	80,433.60	47,945.60	9,868.27	22,619.73
2	90,551.88	54,003.68	11,127.17	25,421.03	2	80,446.40	47,939.33	9,903.57	22,603.50
3	90,398.67	53,839.97	11,123.23	25,435.47	3	80,450.15	47,927.65	9,915.55	22,606.95
4	90,486.68	53,919.73	11,140.67	25,426.28	4	80,391.05	47,905.82	9,892.08	22,593.15
5	90,396.48	53,850.20	11,137.10	25,409.18	5	80,371.80	47,890.32	9,891.73	22,589.75
6	90,488.65	53,911.50	11,136.72	25,440.43	6	80,406.42	47,936.28	9,887.50	22,582.63
7	90,457.73	53,881.97	11,144.83	25,430.93	7	80,412.90	47,934.38	9,889.35	22,589.17
8	90,426.93	53,877.90	11,143.77	25,405.27	8	80,467.62	47,950.63	9,919.40	22,597.58
9	90,441.22	53,884.40	11,149.28	25,407.53	9	80,461.08	47,959.17	9,896.93	22,604.98
10	90,459.68	53,926.32	11,147.03	25,386.33	10	80,399.50	47,899.43	9,880.05	22,620.02
11	90,486.43	53,961.80	11,124.03	25,400.60	11	80,393.70	47,889.05	9,894.17	22,610.48
12	90,391.93	53,841.98	11,140.97	25,408.98	12	80,448.93	47,957.17	9,910.57	22,581.20
A verage	90,443.44	53,889.58	11,138.76	25,415.10	A verage	80,420.32	47,924.99	9,897.73	22,597.59

Response Time Ramp Distribution (IOPS) Data (continued)

50% Load Level:					10% Load Level:				
1,005 BSUs	Start	Stop	Interval	Duration	201 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	7:33:08	7:36:09	0-3	0:03:01	Start-Up/Ramp-Up	7:46:11	7:49:12	0-3	0:03:01
Measurement Interval	7:36:09	7:46:09	3-12	0:10:00	Measurement Interval	7:49:12	7:59:12	3-12	0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	50,224.37	29,918.77	6,185.98	14,119.62	0	10,059.57	5,994.97	1,233.53	2,831.07
1	50,310.35	29,955.83	6,195.68	14,158.83	1	10,073.40	6,009.58	1,238.78	2,825.03
2	50,204.18	29,911.82	6,172.33	14,120.03	2	10,017.47	5,968.60	1,228.97	2,819.90
3	50,283.03	29,948.08	6,197.08	14,137.87	3	10,036.88	5,975.05	1,234.73	2,827.10
4	50,218.23	29,934.08	6,191.45	14,092.70	4	10,053.65	5,997.87	1,238.52	2,817.27
5	50,251.25	29,939.03	6,200.97	14,111.25	5	10,063.33	5,998.72	1,234.50	2,830.12
6	50,248.02	29,942.02	6,200.47	14,105.53	6	10,063.75	5,997.65	1,238.52	2,827.58
7	50,279.78	29,959.95	6,185.83	14,134.00	7	10,066.07	6,000.20	1,237.63	2,828.23
8	50,201.83	29,946.55	6,165.42	14,089.87	8	10,026.93	5,967.27	1,238.67	2,821.00
9	50,286.30	29,991.37	6,180.32	14,114.62	9	10,066.63	6,003.77	1,236.83	2,826.03
10	50,249.25	29,964.25	6,161.20	14,123.80	10	10,014.35	5,967.13	1,237.00	2,810.22
11	50,288.03	29,964.40	6,170.75	14,152.88	11	10,042.03	5,983.50	1,239.38	2,819.15
12	50,264.48	29,956.75	6,170.27	14,137.47	12	10,040.72	5,984.07	1,232.50	2,824.15
Average	50,257.02	29,954.65	6,182.38	14,120.00	A verage	10,047.44	5,987.52	1,236.83	2,823.09


Response Time Ramp Distribution (IOPS) Graph

SPC-1 LRTTM Average Response Time (ms) Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	7:46:11	7:49:12	0-2	0:03:01
Measurement Interval	7:49:12	7:59:12	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.38	0.38	0.40	0.37
1	0.38	0.38	0.40	0.37
2	0.38	0.38	0.40	0.37
3	0.38	0.39	0.40	0.37
4	0.38	0.38	0.40	0.37
5	0.38	0.38	0.40	0.37
6	0.38	0.38	0.40	0.37
7	0.38	0.39	0.40	0.37
8	0.38	0.39	0.40	0.37
9	0.38	0.39	0.40	0.37
10	0.38	0.39	0.40	0.37
11	0.38	0.39	0.40	0.37
12	0.38	0.39	0.40	0.37
A verage	0.38	0.39	0.40	0.37

SPC-1 LRTTM Average Response Time (ms) Distribution Graph

SPC-1 LRTTM (10%) - Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%

Clause 5.3.15.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0349	0.2809	0,.0699	0.2102	0.0180	0.0701	0.0350	0.2810
COV	0.007	0.002	0.005	0.003	0.010	0.004	0.005	0.001

Repeatability Test

Clause 5.4.5

The Repeatability Test demonstrates the repeatability and reproducibility of the SPC-1 IOPSTM primary metric and the SPC-1 LRTTM metric generated in earlier Test Runs.

There are two identical Repeatability Test Phases. Each Test Phase contains two Test Runs. Each of the Test Runs will have a Measurement Interval of no less than ten (10) minutes. The two Test Runs in each Test Phase will be executed without interruption or any type of manual intervention.

The first Test Run in each Test Phase is executed at the 10% load point. The Average Response Time from each of the Test Runs is compared to the SPC-1 LRTTM metric. Each Average Response Time value must be less than the SPC-1 LRTTM metric plus 5% or less than the SPC-1 LRTTM metric plus one (1) millisecond (ms).

The second Test Run in each Test Phase is executed at the 100% load point. The I/O Request Throughput from the Test Runs is compared to the SPC-1 IOPSTM primary metric. Each I/O Request Throughput value must be greater than the SPC-1 IOPSTM primary metric minus 5%. In addition, the Average Response Time for each Test Run cannot exceed 30 milliseconds.

If any of the above constraints are not met, the benchmark measurement is invalid.

Clause 9.4.3.7.5

The following content shall appear in the FDR for each Test Run in the two Repeatability Test Phases:

- 1. A table containing the results of the Repeatability Test.
- 2. An I/O Request Throughput Distribution graph and table.
- 3. An Average Response Time Distribution graph and table.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix E: SPC-1 Workload Generator Input Parameters</u> on Page <u>76</u>.

Repeatability Test Results File

The values for the SPC-1 IOPSTM, SPC-1 LRTTM, and the Repeatability Test measurements are listed in the tables below.

	SPC-1 IOPS™
Primary Metrics	100,493.48
Repeatability Test Phase 1	100,502.08
Repeatability Test Phase 2	100,491.77

The SPC-1 IOPSTM values in the above table were generated using 100% of the specified Business Scaling Unit (BSU) load level. Each of the Repeatability Test Phase values for SPC-1 IOPSTM must greater than 95% of the reported SPC-1 IOPSTM Primary Metric.

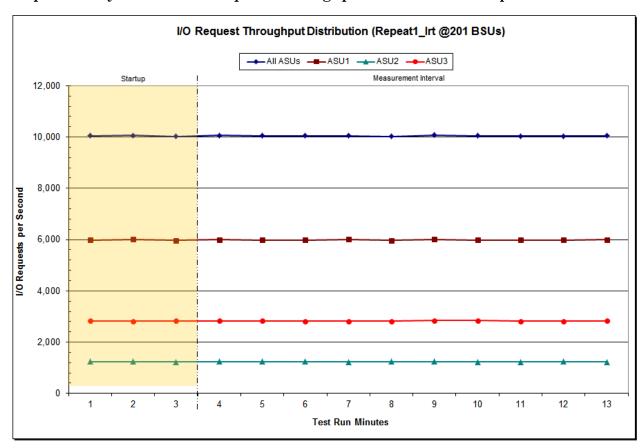
	SPC-1 LRT™
Primary Metrics	0.38
Repeatability Test Phase 1	0.38
Repeatability Test Phase 2	0.38

The average response time values in the SPC-1 LRTTM column were generated using 10% of the specified Business Scaling Unit (BSU) load level. Each of the Repeatability Test Phase values for SPC-1 LRTTM must be less than 105% of the reported SPC-1 LRTTM Primary Metric or less than the reported SPC-1 LRTTM Primary Metric plus one (1) millisecond (ms).

A link to the test result file generated from each Repeatability Test Run is listed below.

Repeatability Test Phase 1, Test Run 1 (LRT)

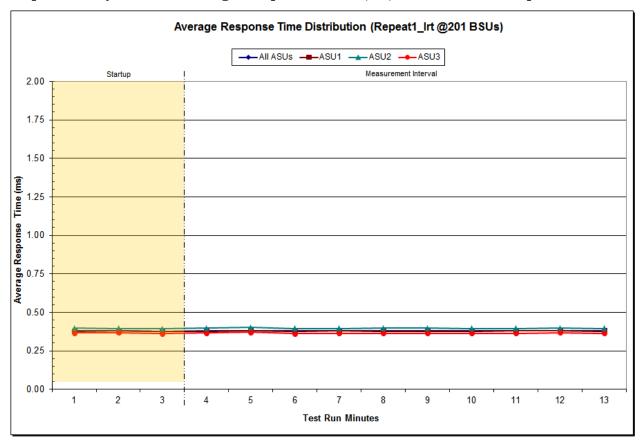
Repeatability Test Phase 1, Test Run 2 (IOPS)


Repeatability Test Phase 2, Test Run 1 (LRT)

Repeatability Test Phase 2, Test Run 2 (IOPS)

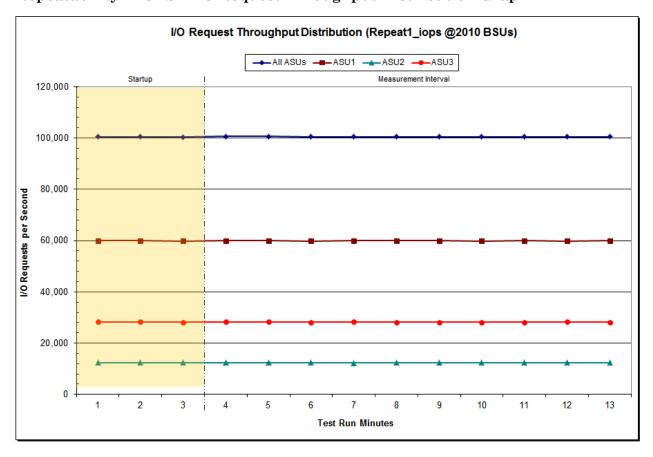
Repeatability 1 LRT - I/O Request Throughput Distribution Data

201 BSUs	Start	Stop	Interval	Duration	
Start-Up/Ramp-Up	7:59:20	8:02:20	0-2	0:03:00	
Measurement Interval	8:02:20	8:12:20	3-12	0:10:00	
60 second intervals	All ASUs	ASU1	ASU2	ASU3	
0	10,052.27	5,984.53	1,236.33	2,831.40	
1	10,056.38	6,008.95	1,234.48	2,812.95	
2	10,027.48	5,971.22	1,232.48	2,823.78	
3	10,064.08	5,999.90	1,238.87	2,825.32	
4	10,044.03	5,985.15	1,233.97	2,824.92	
5	10,043.72	5,986.63	1,236.32	2,820.77	
6	10,054.77	6,004.63	1,229.53	2,820.60	
7	10,023.25	5,972.12	1,235.55	2,815.58	
8	10,080.08	6,002.28	1,240.37	2,837.43	
9	10,044.07	5,974.97	1,228.17	2,840.93	
10	10,030.25	5,976.98	1,233.33	2,819.93	
11	10,032.72	5,975.68	1,236.17	2,820.87	
12	10,047.87	5,990.97	1,232.05	2,824.85	
Average	10,046.48	5,986.93	1,234.43	2,825.12	


Repeatability 1 LRT - I/O Request Throughput Distribution Graph

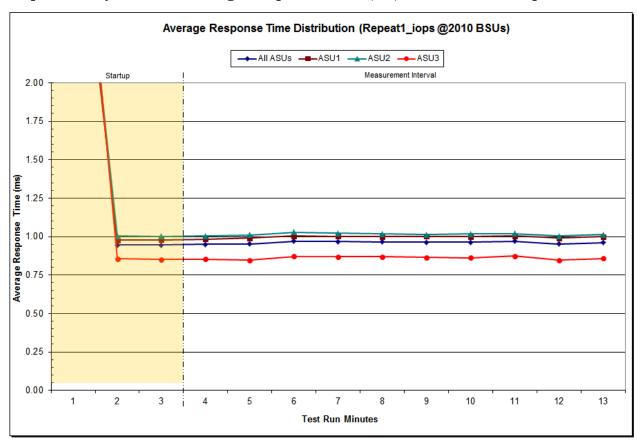
Repeatability 1 LRT -Average Response Time (ms) Distribution Data

201 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	7:59:20	8:02:20	0-2	0:03:00
Measurement Interval	8:02:20	8:12:20	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.38	0.38	0.40	0.37
1	0.38	0.38	0.40	0.37
2	0.38	0.38	0.39	0.36
3	0.38	0.38	0.40	0.37
4	0.38	0.38	0.40	0.37
5	0.38	0.38	0.40	0.36
6	0.38	0.38	0.40	0.36
7	0.38	0.38	0.40	0.36
8	0.38	0.38	0.40	0.36
9	0.38	0.38	0.39	0.36
10	0.38	0.38	0.40	0.36
11	0.38	0.38	0.40	0.37
12	0.38	0.38	0.39	0.36
A verage	0.38	0.38	0.40	0.37


Repeatability 1 LRT -Average Response Time (ms) Distribution Graph

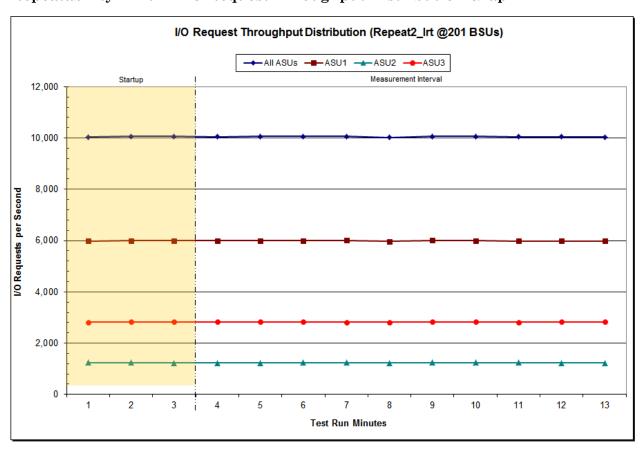
Repeatability 1 IOPS - I/O Request Throughput Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	8:12:26	8:15:27	0-2	0:03:01
Measurement Interval	8:15:27	8:25:27	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	100,529.02	59,919.13	12,369.80	28,240.08
1	100,506.38	59,897.58	12,360.28	28,248.52
2	100,421.65	59,854.02	12,349.32	28,218.32
3	100,579.72	59,952.68	12,355.40	28,271.63
4	100,579.95	59,940.62	12,392.58	28,246.75
5	100,470.43	59,845.23	12,405.25	28,219.95
6	100,498.02	59,913.73	12,337.92	28,246.37
7	100,480.57	59,921.40	12,371.12	28,188.05
8	100,506.23	59,904.27	12,380.00	28,221.97
9	100,442.18	59,841.50	12,372.17	28,228.52
10	100,471.33	59,908.28	12,351.65	28,211.40
11	100,502.72	59,844.27	12,395.28	28,263.17
12	100,489.68	59,896.32	12,367.75	28,225.62
Average	100,502.08	59,896.83	12,372.91	28,232.34


Repeatability 1 IOPS - I/O Request Throughput Distribution Graph

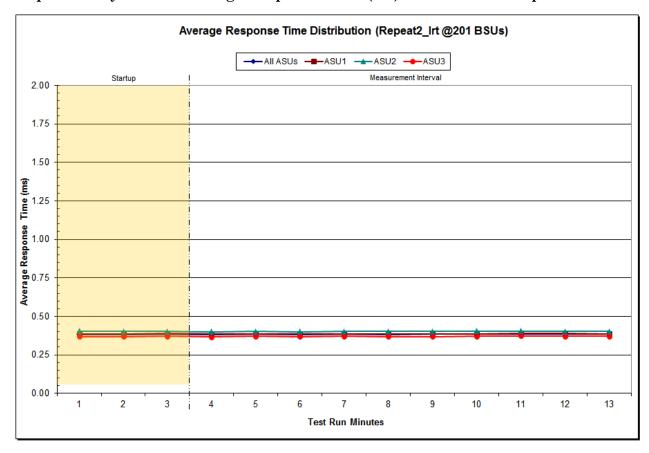
Repeatability 1 IOPS -Average Response Time (ms) Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration	
Start-Up/Ramp-Up	8:12:26	8:15:27	0-2	0:03:01	
Measurement Interval	8:15:27	8:25:27	3-12	0:10:00	
60 second intervals	All ASUs	ASU1	ASU2	ASU3	
0	3.68	3.56	3.67	3.94	
1	0.95	0.98	1.00	0.86	
2	0.95	0.98	1.00	0.85	
3	0.95	0.98	1.00	0.85	
4	0.95	0.99	1.01	0.85	
5	0.97	1.00	1.03	0.87	
6	0.97	1.00	1.02	0.87	
7	0.96	1.00	1.02	0.87	
8	0.96	1.00	1.01	0.86	
9	0.96	1.00	1.02	0.86	
10	0.97	1.00	1.02	0.87	
11	0.95	0.99	1.00	0.85	
12	0.96	1.00	1.01	0.86	
A verage	0.96	1.00	1.01	0.86	


Repeatability 1 IOPS -Average Response Time (ms) Distribution Graph

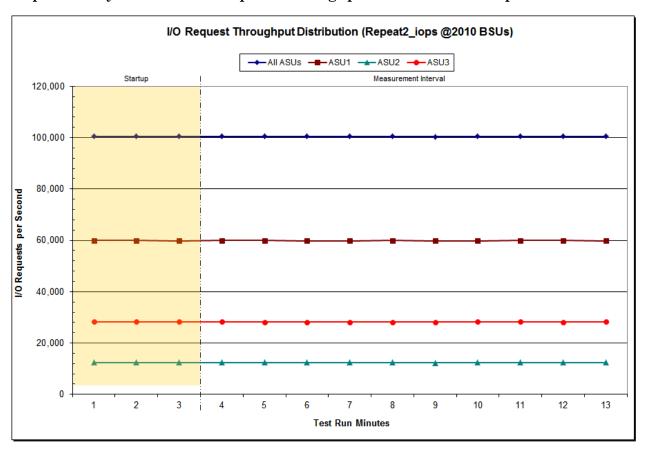
Repeatability 2 LRT – I/O Request Throughput Distribution Data

201 BSUs	Start	Stop	Interval	Duration	
Start-Up/Ramp-Up	8:25:34	8:28:34	0-2	0:03:00	
Measurement Interval	8:28:34	8:38:34	3-12	0:10:00	
60 second intervals	All ASUs	ASU1	ASU2	ASU3	
0	10,042.10	5,985.90	1,235.58	2,820.62	
1	10,061.03	5,996.18	1,237.50	2,827.35	
2	10,058.72	5,997.97	1,232.43	2,828.32	
3	10,052.00	5,997.68	1,230.48	2,823.83	
4	10,056.18	5,998.18	1,231.97	2,826.03	
5	10,069.30	6,001.08	1,241.48	2,826.73	
6	10,058.43	6,007.88	1,235.88	2,814.67	
7	10,028.62	5,974.92	1,232.97	2,820.73	
8	10,069.35	6,003.72	1,240.37	2,825.27	
9	10,064.25	5,990.27	1,245.37	2,828.62	
10	10,048.58	5,982.25	1,244.25	2,822.08	
11	10,047.05	5,984.83	1,231.78	2,830.43	
12	10,036.78	5,980.70	1,231.92	2,824.17	
Average	10,053.06	5,992.15	1,236.65	2,824.26	


Repeatability 2 LRT - I/O Request Throughput Distribution Graph

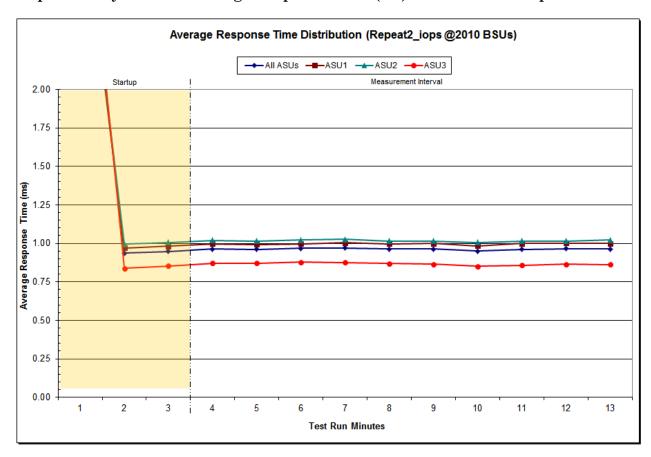
Repeatability 2 LRT -Average Response Time (ms) Distribution Data

201 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	8:25:34	8:28:34	0-2	0:03:00
Measurement Interval	8:28:34	8:38:34	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.38	0.39	0.40	0.37
1	0.38	0.39	0.40	0.37
2	0.38	0.39	0.40	0.37
3	0.38	0.38	0.40	0.37
4	0.38	0.39	0.40	0.37
5	0.38	0.38	0.40	0.37
6	0.38	0.39	0.40	0.37
7	0.38	0.38	0.40	0.37
8	0.38	0.39	0.40	0.37
9	0.38	0.39	0.40	0.37
10	0.39	0.39	0.40	0.37
11	0.39	0.39	0.40	0.37
12	0.38	0.39	0.40	0.37
A verage	0.38	0.39	0.40	0.37


Repeatability 2 LRT -Average Response Time (ms) Distribution Graph

Repeatability 2 IOPS - I/O Request Throughput Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	8:38:40	8:41:41	0-2	0:03:01
Measurement Interval	8:41:41	8:51:41	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	100,499.70	59,889.75	12,345.42	28,264.53
1	100,537.60	59,901.12	12,368.40	28,268.08
2	100,453.95	59,848.32	12,372.57	28,233.07
3	100,559.57	59,928.68	12,370.97	28,259.92
4	100,530.52	59,948.88	12,352.48	28,229.15
5	100,452.77	59,869.65	12,373.02	28,210.10
6	100,438.20	59,864.32	12,373.28	28,200.60
7	100,505.73	59,905.82	12,379.17	28,220.75
8	100,399.17	59,851.58	12,331.67	28,215.92
9	100,515.30	59,884.13	12,368.63	28,262.53
10	100,554.55	59,915.37	12,352.35	28,286.83
11	100,494.68	59,907.35	12,369.22	28,218.12
12	100,467.17	59,853.33	12,369.05	28,244.78
Average	100,491.77	59,892.91	12,363.98	28,234.87


Repeatability 2 IOPS - I/O Request Throughput Distribution Graph

Repeatability 2 IOPS -Average Response Time (ms) Distribution Data

2,010 BSUs	Start	Stop	Interval	Duration	
Start-Up/Ramp-Up	8:38:40	8:41:41	0-2	0:03:01	
Measurement Interval	8:41:41	8:51:41	3-12	0:10:00	
60 second intervals	All ASUs	ASU1	ASU2	ASU3	
0	3.46	3.35	3.40	3.72	
1	0.94	0.97	0.99	0.84	
2	0.95	0.98	1.01	0.85	
3	0.96	1.00	1.02	0.87	
4	0.96	0.99	1.01	0.87	
5	0.97	1.00	1.02	0.88	
6	0.97	1.00	1.03	0.88	
7	0.96	1.00	1.01	0.87	
8	0.96	1.00	1.02	0.86	
9	0.95	0.98	1.00	0.85	
10	0.96	1.00	1.02	0.86	
11	0.96	1.00	1.02	0.86	
12	0.96	1.00	1.02	0.86	
A verage	0.96	1.00	1.02	0.87	

Repeatability 2 IOPS -Average Response Time (ms) Distribution Graph

Repeatability 1 (LRT)

Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV – **Coefficient of Variation:** This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0351	0.2810	0.0700	0.2098	0.0179	0.0701	0.0349	0.2812
COV	0.005	0.002	0.007	0.002	0.009	0.003	0.007	0.002

Repeatability 1 (IOPS)

Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0701	0.0350	0.2809
COV	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.001

Repeatability 2 (LRT)

Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0351	0.2810	0.0701	0.2099	0.0179	0.0700	0.0350	0.2809
COV	0.007	0.002	0.003	0.002	0.012	0.006	0.008	0.002

Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2811	0.0699	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.002	0.001	0.002	0.001	0.003	0.001	0.002	0.001

Submitted for Review: DECEMBER 20, 2016

Data Persistence Test

Clause 6

The Data Persistence Test demonstrates the Tested Storage Configuration (TSC):

- Is capable of maintain data integrity across a power cycle.
- Ensures the transfer of data between Logical Volumes and host systems occurs without corruption or loss.

The SPC-1 Workload Generator will write 16 block I/O requests at random over the total Addressable Storage Capacity of the TSC for ten (10) minutes at a minimum of 25% of the load used to generate the SPC-1 IOPSTM primary metric. The bit pattern selected to be written to each block as well as the address of the block will be retained in a log file.

The Tested Storage Configuration (TSC) will be shutdown and restarted using a power off/power on cycle at the end of the above sequence of write operations. In addition, any caches employing battery backup must be flushed/emptied.

The SPC-1 Workload Generator will then use the above log file to verify each block written contains the correct bit pattern.

Clause 9.4.3.8

The following content shall appear in this section of the FDR:

- 1. A listing or screen image of all input parameters supplied to the Workload Generator.
- 2. For the successful Data Persistence Test Run, a table illustrating key results. Information displayed in this table shall be obtained from the Test Run Results File referenced below in #3.
- 3. For the successful Data Persistence Test Run, the human readable Test Run Results file produced by the Workload Generator (may be contained in an appendix).

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> E: SPC-1 Workload Generator Input Parameters on Page 76.

Data Persistence Test Results File

A link to each test result file generated from each Data Persistence Test is listed below.

Persistence 1 Test Results File

Persistence 2 Test Results File

Data Persistence Test Results

Data Persistence Test Results				
Data Persistence Test Run Number: 1				
Total Number of Logical Blocks Written	240,965,184			
Total Number of Logical Blocks Verified	156,899,536			
Total Number of Logical Blocks that Failed Verification	0			
Time Duration for Writing Test Logical Blocks	10 minutes			
Size in bytes of each Logical Block	512			
Number of Failed I/O Requests in the process of the Test	0			

In some cases the same address was the target of multiple writes, which resulted in more Logical Blocks Written than Logical Blocks Verified. In the case of multiple writes to the same address, the pattern written and verified must be associated with the last write to that address.

PRICED STORAGE CONFIGURATION AVAILABILITY DATE

Clause 9.4.3.9

The committed delivery data for general availability (Availability Date) of all components that comprise the Priced Storage Configuration must be reported. When the Priced Storage Configuration includes products or components with different availability dates, the reported Availability Date for the Priced Storage Configuration must be the date at which all components are committed to be available.

The Huawei OceanStor™ 2600 V3 as documented in this Full Disclosure Report is currently available for customer purchase and shipment.

PRICING INFORMATION

Clause 9.4.3.3.6

The Executive Summary shall contain a pricing spreadsheet as documented in Clause 8.3.1.

Pricing information may be found in the Priced Storage Configuration Pricing section on page <u>17</u>.

TESTED STORAGE CONFIGURATION (TSC) AND PRICED STORAGE CONFIGURATION DIFFERENCES

Clause 9.4.3.3.8

The Executive Summary shall contain a list of all differences between the Tested Storage Configuration (TSC) and the Priced Storage Configuration.

A list of all differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration may be found in the Executive Summary portion of this document on page 17.

Anomalies or Irregularities

Clause 9.4.3.10

The FDR shall include a clear and complete description of any anomalies or irregularities encountered in the course of executing the SPC-1 benchmark that may in any way call into question the accuracy, verifiability, or authenticity of information published in this FDR.

There were no anomalies or irregularities encountered during the SPC-1 Remote Audit of the Huawei OceanStorTM 2600 V3.

APPENDIX A: SPC-1 GLOSSARY

"Decimal" (powers of ten) Measurement Units

In the storage industry, the terms "kilo", "mega", "giga", "tera", "peta", and "exa" are commonly used prefixes for computing performance and capacity. For the purposes of the SPC workload definitions, all of the following terms are defined in "powers of ten" measurement units.

A kilobyte (KB) is equal to 1,000 (10³) bytes.

A megabyte (MB) is equal to 1,000,000 (106) bytes.

A gigabyte (GB) is equal to 1,000,000,000 (109) bytes.

A terabyte (TB) is equal to $1,000,000,000,000 (10^{12})$ bytes.

A petabyte (PB) is equal to 1,000,000,000,000,000 (10¹⁵) bytes

An exabyte (EB) is equal to 1,000,000,000,000,000,000 (1018) bytes

"Binary" (powers of two) Measurement Units

The sizes reported by many operating system components use "powers of two" measurement units rather than "power of ten" units. The following standardized definitions and terms are also valid and may be used in this document.

A kibibyte (KiB) is equal to 1,024 (210) bytes.

A mebibyte (MiB) is equal to 1,048,576 (220) bytes.

A gigibyte (GiB) is equal to 1,073,741,824 (230) bytes.

A tebibyte (TiB) is equal to 1,099,511,627,776 (240) bytes.

A pebibyte (PiB) is equal to 1,125,899,906,842,624 (250) bytes.

An exbibyte (EiB) is equal to 1,152,921,504,606,846,967 (260) bytes.

SPC-1 Data Repository Definitions

Total ASU Capacity: The total storage capacity read and written in the course of executing the SPC-1 benchmark.

Application Storage Unit (ASU): The logical interface between the storage and SPC-1 Workload Generator. The three ASUs (Data, User, and Log) are typically implemented on one or more Logical Volume.

Logical Volume: The division of Addressable Storage Capacity into individually addressable logical units of storage used in the SPC-1 benchmark. Each Logical Volume is implemented as a single, contiguous address space.

Addressable Storage Capacity: The total storage (sum of Logical Volumes) that can be read and written by application programs such as the SPC-1 Workload Generator.

Configured Storage Capacity: This capacity includes the Addressable Storage Capacity and any other storage (parity disks, hot spares, etc.) necessary to implement the Addressable Storage Capacity.

Physical Storage Capacity: The formatted capacity of all storage devices physically present in the Tested Storage Configuration (TSC).

Data Protection Overhead: The storage capacity required to implement the selected level of data protection.

Required Storage: The amount of Configured Storage Capacity required to implement the Addressable Storage Configuration, excluding the storage required for the three ASUs.

Global Storage Overhead: The amount of Physical Storage Capacity that is required for storage subsystem use and unavailable for use by application programs.

Total Unused Storage: The amount of storage capacity available for use by application programs but not included in the Total ASU Capacity.

SPC-1 Data Protection Levels

Protected 1: The single point of failure of any *storage device* in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

Protected 2: The single point of failure of any *component* in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

SPC-1 Test Execution Definitions

Average Response Time: The sum of the Response Times for all Measured I/O Requests divided by the total number of Measured I/O Requests.

Completed I/O Request: An I/O Request with a Start Time and a Completion Time (see "I/O Completion Types" below).

Completion Time: The time recorded by the Workload Generator when an I/O Request is satisfied by the TSC as signaled by System Software.

Data Rate: The data transferred in all Measured I/O Requests in an SPC-1 Test Run divided by the length of the Test Run in seconds.

Expected I/O Count: For any given I/O Stream and Test Phase, the product of 50 times the BSU level, the duration of the Test Phase in seconds, and the Intensity Multiplier for that I/O Stream.

Failed I/O Request: Any I/O Request issued by the Workload Generator that could not be completed or was signaled as failed by System Software. A Failed I/O Request has no Completion Time (see "I/O Completion Types" below).

I/O Request Throughput: The total number of Measured I/O requests in an SPC-1 Test Run divided by the duration of the Measurement Interval in seconds.

In-Flight I/O Request: An I/O Request issued by the I/O Command Generator to the TSC that has a recorded Start Time, but does not complete within the Measurement Interval (see "I/O Completion Types" below).

Measured I/O Request: A Completed I/O Request with a Completion Time occurring within the Measurement Interval (see "I/O Completion Types" below).

Measured Intensity Multiplier: The percentage of all Measured I/O Requests that were issued by a given I/O Stream.

Measurement Interval: The finite and contiguous time period, after the TSC has reached Steady State, when data is collected by a Test Sponsor to generate an SPC-1 test result or support an SPC-1 test result.

Ramp-Up: The time required for the Benchmark Configuration (BC) to produce Steady State throughput after the Workload Generator begins submitting I/O Requests to the TSC for execution.

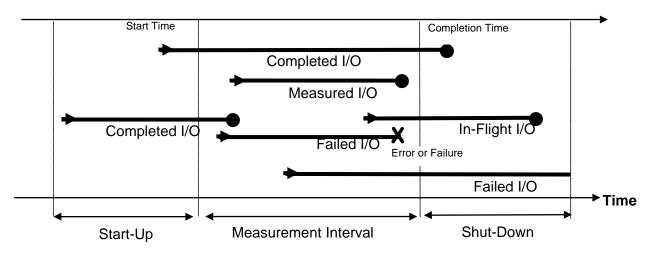
Ramp-Down: The time required for the BC to complete all I/O Requests issued by the Workload Generator. The Ramp-Down period begins when the Workload Generator ceases to issue new I/O Requests to the TSC.

Response Time: The Response Time of a Measured I/O Request is its Completion Time minus its Start Time.

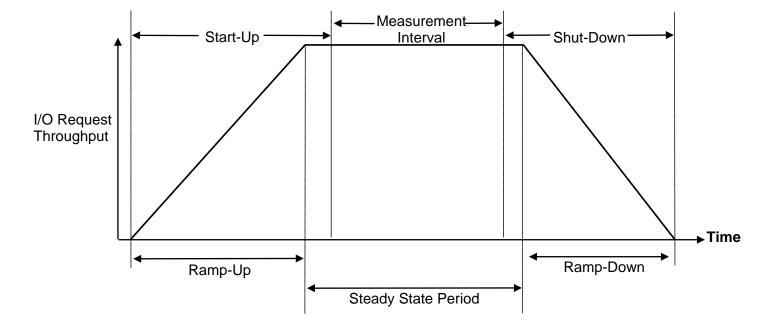
Start Time: The time recorded by the Workload Generator when an I/O Request is submitted, by the Workload Generator, to the System Software for execution on the Tested Storage Configuration (TSC).

Start-Up: The period that begins after the Workload Generator starts to submit I/O requests to the TSC and ends at the beginning of the Measurement Interval.

Shut-Down: The period between the end of the Measurement Interval and the time when all I/O Requests issued by the Workload Generator have completed or failed.


Steady State: The consistent and sustainable throughput of the TSC. During this period the load presented to the TSC by the Workload Generator is constant.

Test: A collection of Test Phases and or Test Runs sharing a common objective.


Test Run: The execution of SPC-1 for the purpose of producing or supporting an SPC-1 test result. SPC-1 Test Runs may have a finite and measured Ramp-Up period, Start-Up period, Shut-Down period, and Ramp-Down period as illustrated in the "SPC-1 Test Run Components" below. All SPC-1 Test Runs shall have a Steady State period and a Measurement Interval.

Test Phase: A collection of one or more SPC-1 Test Runs sharing a common objective and intended to be run in a specific sequence.

I/O Completion Types

SPC-1 Test Run Components

Submitted for Review: DECEMBER 20, 2016

APPENDIX B: CUSTOMER TUNABLE PARAMETERS AND OPTIONS

Red Hat Enterprise Linux 7.0 (64-bit)

Change the I/O scheduler from **cfq** to **noop** on each Host System, which will result in all incoming I/O requests inserted into a simple, unordered FIFO queue. This change was done by the execution of the **scheduler.sh** script as documented in <u>Appendix C: Tested Storage</u> <u>Configuration (TSC) Creation</u>.

APPENDIX C: TESTED STORAGE CONFIGURATION (TSC) CREATION

The scripts referenced in Steps 2 and 3 appear in the section, Referenced Scripts.

Step 1: Create Mapping View, LUN Group, Host Group and Host

Execute the following commands using the OceanStor 2600 V3 CLI from the master Host System to complete the following:

- Create one *mapping_view* (*map1*)
- Create one *lun_group* (*lg1*)
- Create one **host_group** (**hg1**)
- Create one **host** (**host1**)
- Add **host1** to **hg1**
- Add **hg1** and **lg1** to **map1**
- Add the FC ports' WWN to host1

```
create mapping_view name=1 mapping_view_id=1
create lun_group name=1 lun_group_id=1
create host_group name=1 host_group_id=1
create host name=1 operating_system=Linux host_id=1

add host_group host host_group_id=1 host_id_list=1
add mapping_view host_group mapping_view_id=1 host_group_id=1
add mapping_view lun_group mapping_view_id=1 lun_group_id=1

add host initiator host_id=1 initiator_type=FC wwn=21000024ff35e744
add host initiator host_id=1 initiator_type=FC wwn=21000024ff35e745
add host initiator host_id=1 initiator_type=FC wwn=21000024ff455e92
add host initiator host_id=1 initiator_type=FC wwn=21000024ff455e93
```

Step 2: Create Disk Domains, Storage Pools, LUNs

Execute the <u>mklun.sh</u> script on the Host System, which has **expect** installed to complete the following:

- Create 2 disk domains
- Create 2 storage pools (one storage pool per disk domain using all available capacity)
- Create 8 LUNs
 (four LUNs per storage pool using all available capacity)
- Add the 8 LUNs to *lun_group*, *lg1*

Note: **Expect** is a Unix automation and testing tool, written by Don Libes as an extension to the Tcl scripting language, for interactive applications such as telnet, ftp, passwd, fsck, rlogin, tip, ssh, and others. It uses Unix pseudo terminals to wrap up subprocesses transparently, allowing the automation of arbitrary applications that are

accessed over a terminal. Expect is an open source tool can be downloaded at the following location: http://www.nist.gov/el/msid/expect.cfm

Step 3: Create Volumes on the Master Host System

Execute the <u>mkvolume.sh</u> script on the Master Host System to create 38 logical volumes as follows:

1. Create Physical Volume

Create 8 physical volumes using the **pvcreate** command.

2. Create Volumes Groups

Create one volume group (**vg1**) using the **vgcreate** command and the following 8 physical volumes:

dev/sdb, /dev/sdc, /dev/sdd, /dev/sde, /dev/sdf, /dev/sdg, /dev/sdh, /dev/sdi,

3. Create Logical Volumes

- Create 5 logical volumes, each with a capacity of 175.5 GiB, on **vg1** for ASU-1.
- Create 5 logical volumes, each with a capacity of 175.5 GiB, on **vg1** for ASU-2.
- Create 2 logical volumes, each with a capacity of 97.5 GiB, on **vg1** for ASU-3.

Step 4: Change the Scheduler on each Host System

Execute the <u>scheduler.sh</u> script on the Host System to change the scheduler of each block device from **cfq** to **noop** as documented in "<u>Appendix B: Customer Tunable Parameters and Options</u>".

Referenced Scripts

mklun.sh

```
#!/bin/bash
stor=100.148.70.18
stor_user=admin
stor_pswd=Admin@storage2
export LANG=C
echo "creating LUN ..."
expect << _END_CREATE_LUN
     spawn ssh $stor_user@$stor
     set timeout 60
     expect {
           -re "assword" { send "$stor_pswd\r" }
           -re "yes/no" { send "yes\r"; exp_continue }
     expect ">"
           # -----create disk_domain-----
               send "create disk_domain name=1 disk_list=CTE0.0-1,DAE010.0-5
disk_domain_id=1\r"
                         expect ">"
```

Submitted for Review: DECEMBER 20, 2016

```
send "create disk_domain name=2 disk_list=CTE0.2-3,DAE010.6-11 disk_domain_id=2\r"
                          expect ">"
             # -----create storage_pool -----
                send "create storage_pool name=1 disk_type=SSD capacity=1236GB
 pool_id=1 disk_domain_id=1 raid_level=RAID10 stripe_depth=32KB\r"
                          expect ">"
 send "create storage_pool name=2 disk_type=SSD capacity=1236GB pool_id=2
 disk_domain_id=2 raid_level=RAID10 stripe_depth=32KB\r"
                          expect ">"
             # -----create lun -----
                          send "create lun name=1 pool_id=1 capacity=308GB
 owner_controller=0A lun_id=1\r"
                          expect ">"
 send "create lun name=2 pool_id=1 capacity=308GB owner_controller=0B lun_id=2\r"
                          expect ">"
 send "create lun name=3 pool_id=1 capacity=308GB owner_controller=0A lun_id=3\r"
                          expect ">"
 send "create lun name=4 pool_id=1 capacity=308GB owner_controller=0B lun_id=4\r"
                          expect ">"
 send "create lun name=5 pool_id=2 capacity=308GB owner_controller=0A lun_id=5\r"
                          expect ">"
 send "create lun name=6 pool_id=2 capacity=308GB owner_controller=0B lun_id=6\r"
                          expect ">"
 send "create lun name=7 pool_id=2 capacity=308GB owner_controller=0A lun_id=7\r"
                          expect ">"
 send "create lun name=8 pool id=2 capacity=308GB owner_controller=0B lun_id=8\r"
                          expect ">"
             # ----- add all luns to lun_group-----
                send "add lun_group lun lun_group_id=1 lun_id_list=1,2,3,4,5,6,7,8"
                          expect ">"
             send "exit\r"
             expect "(y/n):"
             send "y\r"
             expect EOF
__END_CREATE_LUN
```

mkvolume.sh

```
pvcreate /dev/sdb
pvcreate /dev/sdc
pvcreate /dev/sdd
pvcreate /dev/sde
pvcreate /dev/sdf
pvcreate /dev/sdg
pvcreate /dev/sdh
pvcreate /dev/sdi
vgcreate vg1 /dev/sdb /dev/sdc /dev/sdd /dev/sdf /dev/sdf /dev/sdg /dev/sdh /dev/sdi
lvcreate -n asu1000 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu1001 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu1002 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu1003 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu1004 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu2000 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu2001 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu2002 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu2003 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu2004 -i 8 -I 512 -C y -L 175.5g vg1
lvcreate -n asu3000 -i 8 -I 512 -C y -L 97.5g vg1
lvcreate -n asu3001 -i 8 -I 512 -C y -L 97.5g vg1
```

scheduler.sh

```
echo noop > /sys/block/sdb/queue/scheduler
echo noop > /sys/block/sdc/queue/scheduler
echo noop > /sys/block/sdd/queue/scheduler
echo noop > /sys/block/sde/queue/scheduler
echo noop > /sys/block/sdf/queue/scheduler
echo noop > /sys/block/sdg/queue/scheduler
echo noop > /sys/block/sdh/queue/scheduler
echo noop > /sys/block/sdi/queue/scheduler
```

APPENDIX D: SPC-1 WORKLOAD GENERATOR STORAGE COMMANDS AND PARAMETERS

ASU Pre-Fill

The content of the command and parameter file, used in this benchmark to execute the required ASU pre-fill is listed below.

```
compratio=1
hd=default,vdbench=/root/vdbench,user=root,shell=ssh
hd=hd1,system=host2
sd=default,openflags=o_direct,threads=8
sd=sd1,host=hd1,lun=/dev/vg1/asu1000,size=188441690112
sd=sd2,host=hd1,lun=/dev/vg1/asu1001,size=188441690112
sd=sd3,host=hd1,lun=/dev/vg1/asu1002,size=188441690112
sd=sd4,host=hd1,lun=/dev/vg1/asu1003,size=188441690112
sd=sd5,host=hd1,lun=/dev/vg1/asu1004,size=188441690112
sd=sd6,host=hd1,lun=/dev/vg1/asu2000,size=188441690112
sd=sd7,host=hd1,lun=/dev/vq1/asu2001,size=188441690112
sd=sd8,host=hd1,lun=/dev/vg1/asu2002,size=188441690112
sd=sd9,host=hd1,lun=/dev/vg1/asu2003,size=188441690112
sd=sd10,host=hd1,lun=/dev/vg1/asu2004,size=188441690112
sd=sd11,host=hd1,lun=/dev/vg1/asu3000,size=104689827840
sd=sd12,host=hd1,lun=/dev/vg1/asu3001,size=104689827840
wd=wd1,sd=sd*,rdpct=0,seekpct=-1,xfersize=1024K
rd=PREPASU1, wd=wd1, iorate=max, elapsed=3600000, interval=10
```

Primary Metrics, Repeatability and Persistence Tests

The content of SPC-1 Workload Generator command and parameter file used in this benchmark to execute the Primary Metrics (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase), Repeatability (Repeatability Test Phase 1 and Repeatability Test Phase 2) Tests and Persistence Tests is listed below.

```
sd=asu1_1000,lun=/dev/vg1/asu1000,size=188441690112
sd=asu1_1001,lun=/dev/vg1/asu1001,size=188441690112
sd=asu1_1002,lun=/dev/vg1/asu1002,size=188441690112
sd=asu1_1003,lun=/dev/vg1/asu1003,size=188441690112
sd=asu1_1004,lun=/dev/vg1/asu1004,size=188441690112
sd=asu2_2000,lun=/dev/vg1/asu2000,size=188441690112
sd=asu2_2001,lun=/dev/vg1/asu2001,size=188441690112
sd=asu2_2002,lun=/dev/vg1/asu2002,size=188441690112
sd=asu2_2003,lun=/dev/vg1/asu2003,size=188441690112
sd=asu2_2004,lun=/dev/vg1/asu2004,size=188441690112
sd=asu3_3000,lun=/dev/vg1/asu3000,size=104689827840
sd=asu3_3001,lun=/dev/vg1/asu3001,size=104689827840
```

APPENDIX E: SPC-1 WORKLOAD GENERATOR INPUT PARAMETERS

The following script, **run.sh**, was invoked to execute the following in an uninterrupted execution sequence:

- Generate the first set of detailed storage configuration information required for a remote audit.
- The required ASU pre-fill.
- Start the Slave JVMs on the two Host Systems
- The commands to execute the Primary Metrics Test (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase), Repeatability Test (Repeatability Test Phase 1 and Repeatability Test Phase 2), and SPC-1 Persistence Test Run 1 (write phase).

After the above test sequence completed, the script paused until the required TSC power off/power on cycle completed then executed the following:

- Generate the second set of detailed storage configuration information required for a remote audit.
- The command to execute the SPC-2 Persistence Test Run 2 (read phase).

run.sh

```
#JAVA="/usr/java/jre1.6.0_45/bin/java -d64 -Xms7168m -Xmx7168m -Xmn1792m -Xss192k -
Xincgc"
JAVA="/usr/java/jre1.6.0_45/bin/java -Xmx7168m -Xincgc"
EXEDIR=/root/2600
expect shstorage.tcl > profile1_storage.log
date > profile1_volume.log
lvdisplay >> profile1_volume.log
date >> profile1_volume.log
echo "ASU prefill started....."
../vdbench/vdbench -f /root/2600/prefilling.cfg -o /root/2600/PreFill
echo "ASU prefill complete...."
$JAVA -cp ../spc1 metrics -b 2010 -t 28800
$JAVA -cp ../spc1 repeat1 -b 2010
$JAVA -cp ../spc1 repeat2 -b 2010
$JAVA -cp ../spc1 persist1 -b 2010
echo "Power cycle TSC, then Enter to continue"
read
expect shstorage.tcl > profile2_storage.log
date > profile2_volume.log
lvdisplay >> profile2_volume.log
date >> profile2_volume.log
$JAVA -cp ../spc1 persist2
```

APPENDIX F: THIRD-PARTY QUOTATION

Priced Storage Configuration

Netfast Technology Solutions, Inc. 989, Avenues of America, FI 12 New York, NY 10018, USA

Voice: (212) 792-5200 , Fax: (212) 213-1152

12/16/2016, Quote Valid:90 Days

No.	Model	Description	Qty	Unit Price(\$)	Total Price(\$)
1	Phase				
1.1	Location				
1.1.1	2600 V3 Storage System				
1.1.1.1	Control Module				
	26V3I-S-64G-AC	2600 V3(2U,Dual Ctrl,AC,64GB,2*6*GE,25*2.5",SPE23C0225)	1	7213.44	7,213.44
1.1.1.2	Hard Disk Drives				
	26V3-S-SSD400	400GB SSD Disk Unit(2.5")	16	639.36	10,229.76
1.1.1.3	IO Interface				
	SMARTIO8FC	4 port SmartIO I/O module(SFP+,8Gb FC)	2	665.04	1,330.08
1.1.1.4	Accessory				
	SN2F01FCPC	Patch Cord,DLC/PC,DLC/PC,Multi-mode,3m,A1a.2,2mm,42mm	4	11.00	44.00
1.1.1.5	НВА				
	N8GHBA000	QLOGIC QLE2562 HBA Card,PCIE,8Gbps DualPort ,Fiber Channel Multimode LC Optic Interface,English Manual, No Drive CD	2	1000.00	2,000.00
1.1.1.6	Storage Software				
	LIC-26V3I-BS	Basic Software License for Block(Include Device Management,SmartThin,SmartMultiTenant,SmartMigration,SmartErase,SmartMotion,SmartConfig,Ultrapath,CloudService)	1	624.00	624.00
Total of	Total of Product				21,441.28

Priced Storage Configuration (continued)

Netfast Technology Solutions, Inc. 989, Avenues of America, FI 12 New York, NY 10018, USA

Voice: (212) 792-5200 , Fax: (212) 213-1152

12/16/2016, Quote Valid:90 Days

No.	Model	Description	Qty	Unit Price(\$)	Total Price(\$)
1	Phase				
1.1	Location				
1.1.1	2600 V3 Storage System				
1.1.1.8	Maintenance Su	pport Service			
	88125ESH	OceanStor 2600 V3 Installation Service - Engineering	1	1424.50	1,424.50
	02350SJE- 88134ULF-3	2600 V3(2U,Dual Ctrl,AC,64GB,2*6*GE,25*2.5",SPE23C0225)-Hi- Care Onsite Premier 24x7x4H Engineer Onsite Service-3Year(s)		3259.20	3,259.20
	88033NKH- 88134UHK-3	Basic Software License for Block-Hi-Care Application Software Upgrade Support Service-3Year(s)	1	409.50	409.50
Total of	Total of Service (3 years)				
Total Price					26,534.48

Notes:Hi-Care Premier On-Site Service include: 7*24 Technical Assistance Center Access. Access to all new software updates and Online Support. 24*7*4 Hours Onsite Hardware Replacement.