

SPC BENCHMARK 1TM FULL DISCLOSURE REPORT

FUJITSU LIMITED FUJITSU STORAGE SYSTEMS ETERNUS DX600 S3

SPC-1 V1.14

Submitted for Review: July 25, 2014 Submission Identifier: A00146

First Edition – July 2014

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item has been reviewed by Fujitsu Limited for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in the United States. Fujitsu Limited may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local Fujitsu Limited representative for information on products and services available in your area.

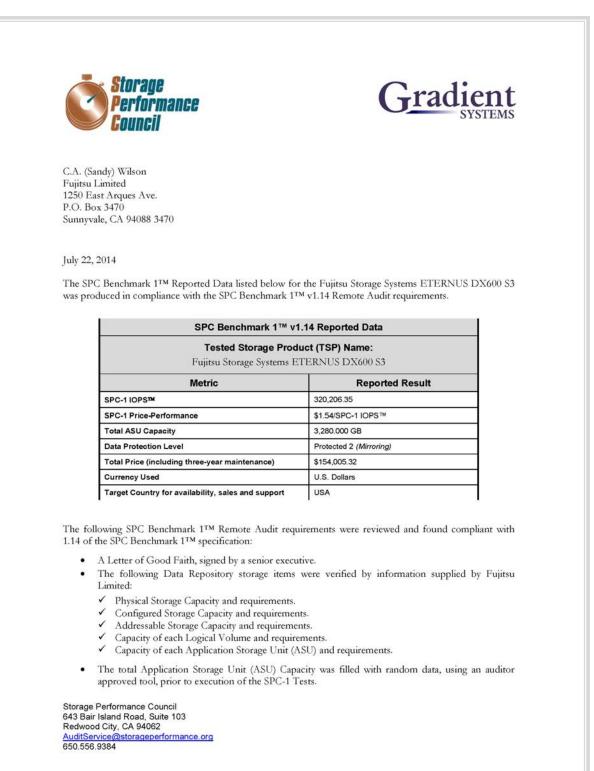
© Copyright Fujitsu Limited 2014. All rights reserved.

Permission is hereby granted to reproduce this document in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark-1, SPC-1, SPC-1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks of the Storage Performance Council. Dell, ETERNUS is a trademark or registered trademark of Fujitsu Limited in the United States and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Table of Contents


Audit Certificationvi	i
Audit Certification (cont.)	i
Audit Certification (cont.)ix	K
Letter of Good Faith	K
Executive Summary11	1
Test Sponsor and Contact Information11	1
Revision Information and Key Dates11	1
Tested Storage Product (TSP) Description11	1
Summary of Results	2
Storage Capacities, Relationships, and Utilization13	3
Response Time – Throughput Curve16	6
Response Time – Throughput Data16	6
Priced Storage Configuration Pricing17	7
Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration18	8
Priced Storage Configuration Diagram19	9
Priced Storage Configuration Components20	D
Configuration Information21	L
Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Diagram.21	1
Storage Network Configuration21	1
Host System(s) and Tested Storage Configuration (TSC) Table of Components 21	1
Benchmark Configuration/Tested Storage Configuration Diagram22	2
Host System and Tested Storage Configuration Components	3
Customer Tunable Parameters and Options24	4
Tested Storage Configuration (TSC) Description24	4
SPC-1 Workload Generator Storage Configuration24	4
ASU Pre-Fill	5
SPC-1 Data Repository	6
Storage Capacities and Relationships20	6
SPC-1 Storage Capacities	6
SPC-1 Storage Hierarchy Ratios27	7
SPC-1 Storage Capacity Charts	7
Storage Capacity Utilization29	9
Logical Volume Capacity and ASU Mapping30	D
SPC-1 Benchmark Execution Results	1

SPC-1 Tests, Test Phases, and Test Runs	31
"Ramp-Up" Test Runs	32
Primary Metrics Test – Sustainability Test Phase	32
SPC-1 Workload Generator Input Parameters	33
Sustainability Test Results File	33
Sustainability – Data Rate Distribution Data (MB/second)	33
Sustainability – Data Rate Distribution Graph	33
Sustainability – I/O Request Throughput Distribution Data	34
Sustainability – I/O Request Throughput Distribution Graph	34
Sustainability – Average Response Time (ms) Distribution Data	35
Sustainability – Average Response Time (ms) Distribution Graph	35
Sustainability – Response Time Frequency Distribution Data	36
Sustainability – Response Time Frequency Distribution Graph	36
Sustainability – Measured Intensity Multiplier and Coefficient of Variation	37
Primary Metrics Test – IOPS Test Phase	38
SPC-1 Workload Generator Input Parameters	38
IOPS Test Results File	38
IOPS Test Run – I/O Request Throughput Distribution Data	39
IOPS Test Run – I/O Request Throughput Distribution Graph	39
IOPS Test Run – Average Response Time (ms) Distribution Data	40
IOPS Test Run – Average Response Time (ms) Distribution Graph	40
IOPS Test Run –Response Time Frequency Distribution Data	41
IOPS Test Run –Response Time Frequency Distribution Graph	41
IOPS Test Run – I/O Request Information	42
IOPS Test Run – Measured Intensity Multiplier and Coefficient of Variation	42
Primary Metrics Test – Response Time Ramp Test Phase	43
SPC-1 Workload Generator Input Parameters	43
Response Time Ramp Test Results File	43
Response Time Ramp Distribution (IOPS) Data	44
Response Time Ramp Distribution (IOPS) Data (continued)	45
Response Time Ramp Distribution (IOPS) Graph	45
SPC-1 LRT [™] Average Response Time (ms) Distribution Data	46
SPC-1 LRT [™] Average Response Time (ms) Distribution Graph	46
SPC-1 LRT [™] (10%) – Measured Intensity Multiplier and Coefficient of Variation	47
Repeatability Test	48
SPC-1 Workload Generator Input Parameters	48
Repeatability Test Results File	49
Repeatability 1 LRT – I/O Request Throughput Distribution Data	50
Repeatability 1 LRT – I/O Request Throughput Distribution Graph	50

Repeatability 1 LRT –Average Response Time (ms) Distribution Data	51
Repeatability 1 LRT –Average Response Time (ms) Distribution Graph	51
Repeatability 1 IOPS – I/O Request Throughput Distribution Data	52
Repeatability 1 IOPS – I/O Request Throughput Distribution Graph	52
Repeatability 1 IOPS –Average Response Time (ms) Distribution Data	53
Repeatability 1 IOPS –Average Response Time (ms) Distribution Graph	53
Repeatability 2 LRT – I/O Request Throughput Distribution Data	54
Repeatability 2 LRT – I/O Request Throughput Distribution Graph	54
Repeatability 2 LRT –Average Response Time (ms) Distribution Data	55
Repeatability 2 LRT –Average Response Time (ms) Distribution Graph	55
Repeatability 2 IOPS – I/O Request Throughput Distribution Data	56
Repeatability 2 IOPS – I/O Request Throughput Distribution Graph	56
Repeatability 2 IOPS –Average Response Time (ms) Distribution Data	57
Repeatability 2 IOPS –Average Response Time (ms) Distribution Graph	57
Repeatability 1 (LRT) Measured Intensity Multiplier and Coefficient of Variation	58
Repeatability 1 (IOPS) Measured Intensity Multiplier and Coefficient of Variation	58
Repeatability 2 (LRT) Measured Intensity Multiplier and Coefficient of Variation	58
Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation	59
Data Persistence Test	60
SPC-1 Workload Generator Input Parameters	60
Data Persistence Test Results File	60
Data Persistence Test Results	61
Priced Storage Configuration Availability Date	.62
Pricing Information	. 62
Tested Storage Configuration (TSC) and Priced Storage Configuration	
Differences	.62
Anomalies or Irregularities	. 62
Appendix A: SPC-1 Glossary	.63
"Decimal" (powers of ten) Measurement Units	63
"Binary" (powers of two) Measurement Units	63
SPC-1 Data Repository Definitions	63
SPC-1 Data Protection Levels	64
SPC-1 Test Execution Definitions	64
I/O Completion Types	66
SPC-1 Test Run Components	66
Appendix B: Customer Tunable Parameters and Options	.67
QLogic HBA Driver	67

Appendix C: Tested Storage Configuration (TSC) Creation	
Step 1 – Creation of RAID Groups	68
Step 2 – Creation of the Logical Volumes	68
Step 3 – Creation of the Global Hot Spares	68
Step 4 – Assignment of LUN Mapping to the Linux Host Systems	68
Referenced Scripts	69
doFDRcfg.sh	69
DX600S3_20140423.exp	70
$show Format Status. exp \dots \dots$	71
Appendix D: SPC-1 Workload Generator Storage Commands and	
Parameters	73
ASU Pre-Fill	73
Primary Metrics and Repeatability Tests	74
SPC-1 Persistence Test Run 1 (write phase)	74
SPC-2 Persistence Test	
Common Command Lines – SPC-2 Persistence Test	
SPC-2 Persistence Test Run 1 (write phase)	
SPC-2 Persistence Test Run 2 (read phase)	75
Slave JVMs	76
Appendix E: SPC-1 Workload Generator Input Parameters	77
'Master' Execution Script	77
doFDRall_1H.sh	77
SPC-1 Persistence Test Run 2	81
doFDRall_2H.sh	81
Referenced Scripts and Files	82
Setup2FDRH.sh	82
spc1-device.cfg	83
spc1_master_header.txt	83
setup_slave_dirsH.sh	
slave_header.txt	
start_slavesH.sh	85
stop_slaves.sh	

AUDIT CERTIFICATION

AUDIT CERTIFICATION (CONT.)

Fujitsu Storage Systems ETERNUS DX600 S3 Page 2 SPC-1 Audit Certification An appropriate diagram of the Benchmark Configuration (BC)/Tested Storage Configuration (TSC). Listings and commands to configure the Benchmark Configuration/Tested Storage Configuration, including customer tunable parameters that were changed from default values. SPC-1 Workload Generator commands and parameters used for the audited SPC Test Runs. The following Host System requirements were verified by information supplied by Fujitsu Limited: ✓ The type of Host Systems including the number of processors and main memory. 1 The presence and version number of the SPC-1 Workload Generator on each Host System. ✓ The TSC boundary within each Host System. The execution of each Test, Test Phase, and Test Run was found compliant with all of the requirements and constraints of Clauses 4, 5, and 11 of the SPC-1 Benchmark Specification. The Test Results Files and resultant Summary Results Files received from Fujitsu Limited for each of following were authentic, accurate, and compliant with all of the requirements and constraints of Clauses 4 and 5 of the SPC-1 Benchmark Specification: Data Persistence Test Sustainability Test Phase **IOPS** Test Phase Response Time Ramp Test Phase ✓ Repeatability Test The TSC was configured with four Channel Adapters (CAs), each with 4 ports of which 2 ports were used in each CA for the SPC-1 measurements. The Priced Storage Configuration included four Channel Adapters (CAs) each with 2 ports. If the TSC had been configured with the 2 port CAs there would not have been a difference in the reported SPC-1 performance. The TSC was configured with rack that had three PDUs, but the TSC only utilized the capacity of one PDU. The Priced Storage Configuration included only a single PDU. If the TSC had been configured with only a single PDU there would not have been a difference in the reported SPC-1 performance. The submitted pricing information met all of the requirements and constraints of Clause 8 of the SPC-1 Benchmark Specification. The Full Disclosure Report (FDR) met all of the requirements in Clause 9 of the SPC-1 Benchmark Specification. This successfully audited SPC measurement is not subject to an SPC Confidential Review. Storage Performance Council 643 Bair Island Road, Suite 103 Redwood City, CA 94062 AuditService@storageperformance.org 650.556.9384

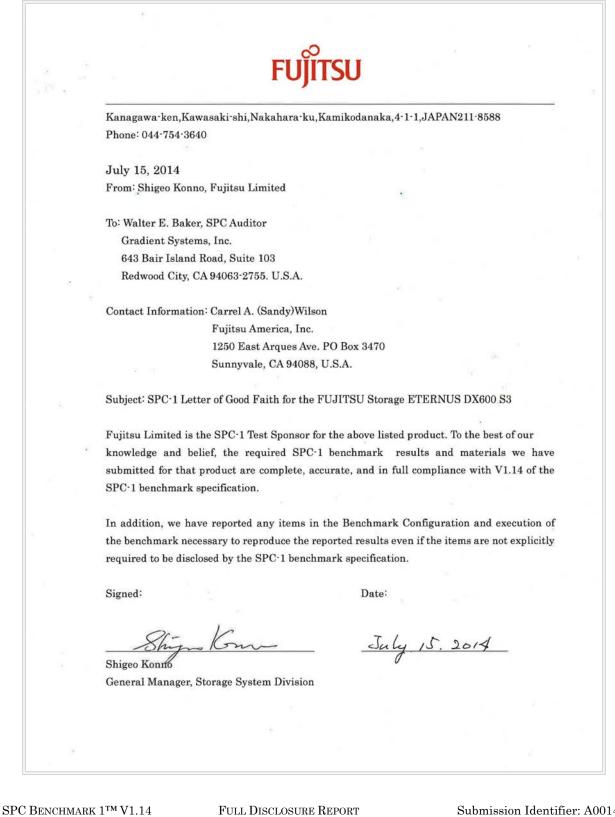
AUDIT CERTIFICATION (CONT.)

Fujitsu Storage Systems ETERNUS DX600 S3 Page 3 SPC-1 Audit Certification

Audit Notes:

The SPC-1 Workload Generator was configured to use 60 Slave JVMs rather than the required 65 Slave JVMs. Based on prior testing, such a smaller number of Slave JVMs would have no impact on the reported SPC-1 IOPS performance and negligible to no impact on reported SPC-1 Average Response Times. If there was any impact on the reported SPC-1 Average Response Times, that impact would be slightly increased reported SPC-1 Average Response Times.

Respectfully,


Walter E. Baker

Walter E. Baker SPC Auditor

Storage Performance Council 643 Bair Island Road, Suite 103 Redwood City, CA 94062 <u>AuditService@storageperformance.org</u> 650.556.9384

SPC BENCHMARK 1™ V1.14 FULL DISCLOSURE REPORT Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

LETTER OF GOOD FAITH

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

EXECUTIVE SUMMARY

Test Sponsor and Contact Information

	Test Sponsor and Contact Information
Test Sponsor Primary Contact	Fujitsu Limited – <u>http://www.fujitsu.com/services/computing/storage/</u> Fujitsu America, Inc. C.A. (Sandy) Wilson <u>swilson@us.fujitsu.com</u> 1250 East Arques Ave PO Box 3470 Sunnyvale, CA 94088-3470 Phone: (916) 434-8593
Test Sponsor Alternate Contact	Fujitsu Limited – <u>http://www.fujitsu.com/services/computing/storage/</u> Fujitsu America, Inc. Kun Katsumata <u>kkatsumata@us.fujitsu.com</u> 1250 East Arques Ave PO Box 3470 Sunnyvale, CA 94088-3470 Phone: (408) 746-6415
Test Sponsor Alternate Contact	Fujitsu Limited <u>http://www.fujitsu.com/services/computing/storage/</u> Shigeo Konno <u>konno.shigeo@jp.fujitsu.com</u> 1-1 Kamikodanaka 4-chome, Nakahara-ku, Kawasaki-shi, Kanagawa-ken 211-8588, Japan Phone: (044) 754-3632 FAX: (044) 754-3719
Auditor	Storage Performance Council – <u>http://www.storageperformance.org</u> Walter E. Baker – <u>AuditService@StoragePerformance.org</u> 643 Bair Island Road, Suite 103 Redwood City, CA 94063 Phone: (650) 556-9384 FAX: (650) 556-9385

Revision Information and Key Dates

Revision Information and Key Dates				
SPC-1 Specification revision number	V1.14			
SPC-1 Workload Generator revision number	V2.3.0			
Date Results were first used publicly	July 25, 2014			
Date the FDR was submitted to the SPC	July 25, 2014			
Date the Priced Storage Configuration is available for shipment to customers	currently available			
Date the TSC completed audit certification	July 22, 2014			

Tested Storage Product (TSP) Description

The scalable, unified Fujitsu Storage ETERNUS DX600 S3 system delivers leading storage performance and automated quality of service management enabling a maximum of system utilization and contributing to a fast ROI. It is the perfect solution when consolidating data in large-scale databases, business critical applications and business analytics / big data - all into one system.

It provides ample headroom for demanding server/desktop virtualization environments and enterprise file services. Extensive high-availability and disaster recovery capabilities make ETERNUS DX600 S3 an ideal storage system for business-critical data.

Summary of Results

SPC-1 Reported Data					
Tested Storage Product (TSP) Name: Fujitsu Storage Systems ETERNUS DX600 S3					
Metric Reported Result					
SPC-1 IOPS™	320,206.35				
SPC-1 Price-Performance™	\$1.54/SPC-1 IOPS™				
Total ASU Capacity	5,306.00GB				
Data Protection Level	Protected 2 (mirroring)				
Total Price	\$493,346.14				
Currency Used	U.S. Dollars				
Target Country for availability, sales and support	USA				

SPC-1 IOPS™ represents the maximum I/O Request Throughput at the 100% load point.

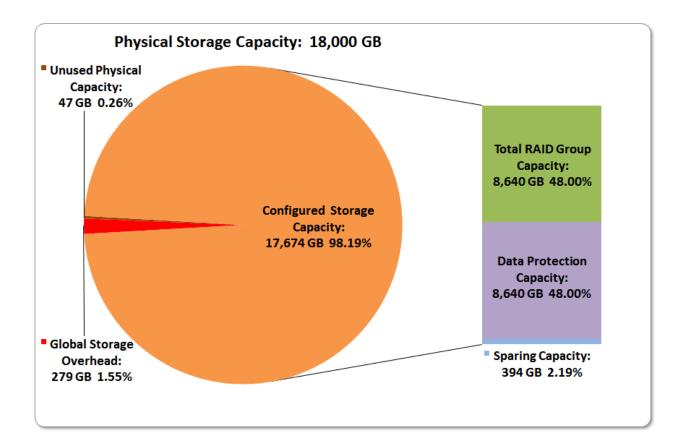
SPC-1 Price-Performance[™] is the ratio of Total Price to SPC-1 IOPS[™].

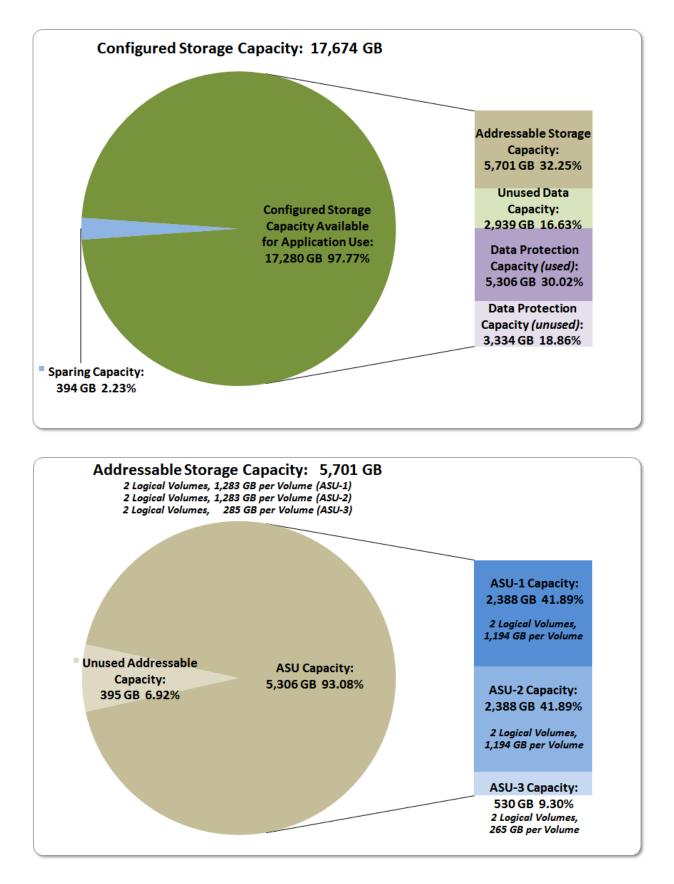
Total ASU (Application Storage Unit) **Capacity** represents the total storage capacity available to be read and written in the course of executing the SPC-1 benchmark.

A **Data Protection Level** of **Protected 2** using *Mirroring* configures two or more identical copies of user data.

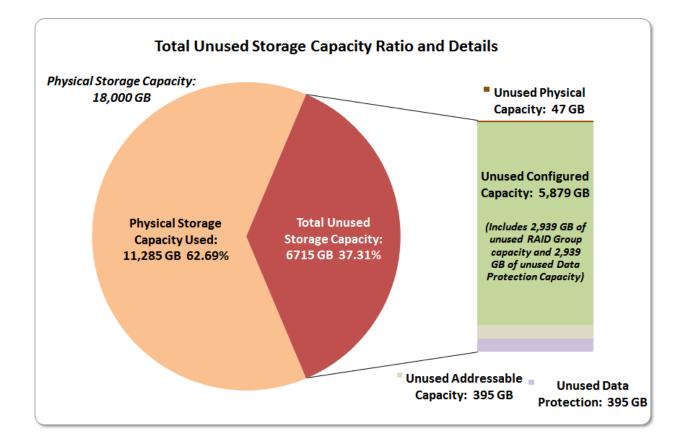
Protected 2: The single point of failure of any **component** in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

Total Price includes the cost of the Priced Storage Configuration plus three years of hardware maintenance and software support as detailed on page 17.


Currency Used is formal name for the currency used in calculating the Total Price and SPC-1 Price-PerformanceTM. That currency may be the local currency of the Target Country or the currency of a difference country (non-local currency).


The **Target Country** is the country in which the Priced Storage Configuration is available for sale and in which the required hardware maintenance and software support is provided either directly from the Test Sponsor or indirectly via a third-party supplier.

Storage Capacities, Relationships, and Utilization


The following four charts and table document the various storage capacities, used in this benchmark, and their relationships, as well as the storage utilization values required to be reported.

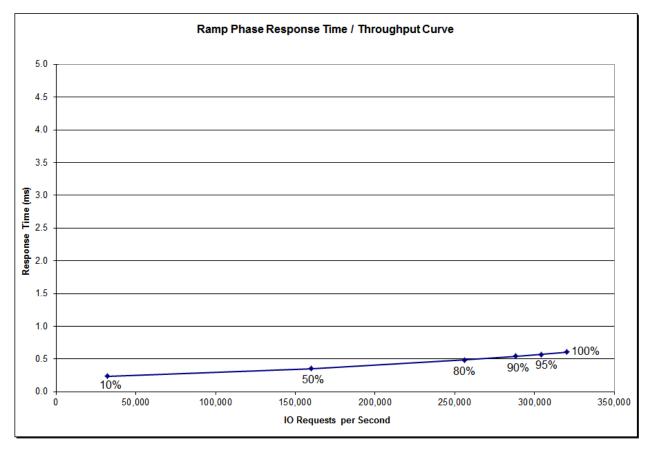
The capacity values in each of the following four charts are listed as integer values, for readability, rather than the decimal values listed elsewhere in this document.

SPC BENCHMARK 1™ V1.14 FULL DISCLOSURE REPORT Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

SPC-1 Storage Capacity	Utilization
Application Utilization	29.48%
Protected Application Utilization	58.96%
Unused Storage Ratio	37.31%

Application Utilization: Total ASU Capacity (*5,306.000 GB*) divided by Physical Storage Capacity (*18,000.000 GB*).

Protected Application Utilization: (Total ASU Capacity (5,306.000 GB) plus total Data Protection Capacity (8,639.864 GB) minus unused Data Protection Capacity (3,333.864 GB)) divided by Physical Storage Capacity (18,000.000 GB).


Unused Storage Ratio: Total Unused Capacity (6,714.972 GB) divided by Physical Storage Capacity (18,000.000 GB) and may not exceed 45%.

Detailed information for the various storage capacities and utilizations is available on pages 26-27.

Response Time – Throughput Curve

The Response Time-Throughput Curve illustrates the Average Response Time (milliseconds) and I/O Request Throughput at 100%, 95%, 90%, 80%, 50%, and 10% of the workload level used to generate the SPC-1 IOPSTM metric.

The Average Response Time measured at any of the above load points cannot exceed 30 milliseconds or the benchmark measurement is invalid.

Response Time – Throughput Data

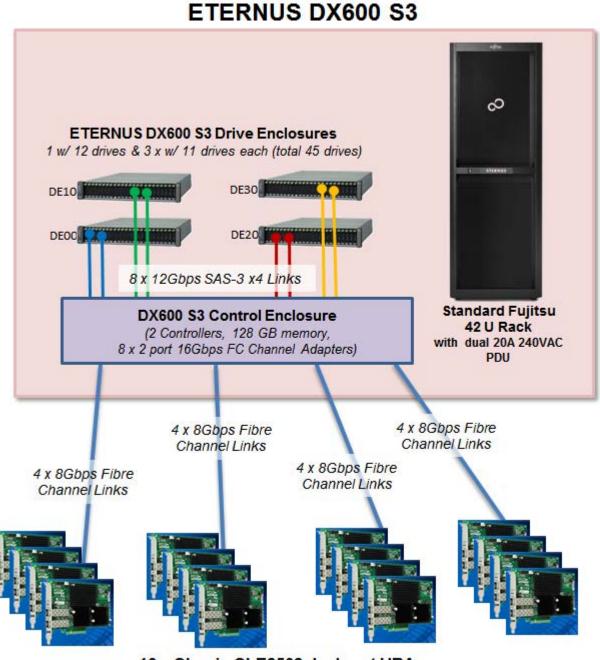
	10% Load	50% Load	80% Load	90% Load	95% Load	100% Load
I/O Request Throughput	31,993.50	160,100.49	256,184.93	288,234.65	304,212.79	320,206.35
Average Response Time (ms):						
All ASUs	0.24	0.35	0.48	0.54	0.57	0.61
ASU-1	0.25	0.41	0.57	0.64	0.68	0.72
ASU-2	0.26	0.47	0.67	0.76	0.80	0.85
ASU-3	0.19	0.19	0.22	0.23	0.25	0.26
Reads	0.33	0.63	0.92	1.04	1.10	1.16
Writes	0.17	0.17	0.20	0.21	0.23	0.24

Product ID	Product Name	Qty	Unit List Price	Extended LP	Discount %	Discounted Price
ET603SAU	DX600 S3 Base System Dual Controllers (CMs) Rackmount (AC200V, 3RU)	1	\$39,515.00	\$39,515.00	30%	\$27,660.50
ETPEADU	Drive Enclosure - DX500/600 Rackmount (AC200V, 2RU) (2.5" HDD)	4	\$4,275.00	\$17,100.00	30%	\$11,970.00
ETPM8H	Cache Memory - DX600 S3 128GB (64GB per CM)	1	\$48,000.00	\$48,000.00	30%	\$33,600.00
ETPHH4	FC Host Channel Adapter (CA) pair, 4 ports DX500/600 S3 (2 ports per CA) (4/8/16Gbps, Host/Remote Connect)	4	\$10,500.00	\$42,000.00	30%	\$29,400.00
ETPSA4	MLC-SSD 400GB 2.5" Drive x1 SAS for DX100/200 S3	45	\$8,000.00	\$360,000.00	30%	\$252,000.00
QLE2562	QLogic 8Gbps Dual Port Fibre Channel Host Bus Adapter	16	\$2,597.85	\$41,565.60	10%	\$37,409.04
ETPKC10U	AC Power Cords (125V - IEC320-C14, 0.5m)	5	\$130.00	\$650.00	30%	\$455.00
ETPP12U-L	Power Distribution Unit for DX (AC240V, 6 enclosures, 2RU)	1	\$2,170.00	\$2,170.00	30%	\$1,519.00
ETPRANU	Base Rack (42RU, 1000x2000mm) with Front & Rear Doors, side panels without Earthquake Stabilizers	1	\$4,210.00	\$4,210.00	30%	\$2,947.00
61-343827-003	Fibre Channel Host IF Cable LC/LC - 3m	16	\$132.00		30%	\$1,478.40
· ·	er day / 7days per week 4 hour response for 36 months within North America)					
ETD600-W059360-ABD	Warranty Service, 36 months Standard, 9x5 phone, NBD response	1	\$0.00	\$0.00		\$0.00
ETD600-U004361-ABD	Warranty Uplift, 36 months Enhanced plus, 24x7 4hr onsite	1	\$116,204.00	\$116,204.00	20%	\$92,963.20
	ETERNUS Installation,					

SFPs are included.

Total: \$493,346.14

The above pricing includes hardware maintenance and software support for three years, 7 days per week, 24 hours per day. The hardware maintenance and software support provides the following:


- Acknowledgement of new and existing problems within four (4) hours.
- Onsite presence of a qualified maintenance engineer or provision of a customer replaceable part within four (4) hours of the above acknowledgement for any hardware failure that results in an inoperative Price Storage Configuration that can be remedied by the repair or replacement of a Priced Storage Configuration component.

Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration

The TSC was configured with four Channel Adapters (CAs), each with 4 ports of which 2 ports were used in each CA for the SPC-1 measurements. The Priced Storage Configuration included four Channel Adapters (CAs) each with 2 ports. If the TSC had been configured with the 2 port CAs there would not have been a difference in the reported SPC-1 performance.

The TSC was configured with rack that had three PDUs, but the TSC only utilized the capacity of one PDU. The Priced Storage Configuration included only a single PDU. If the TSC had been configured with only a single PDU there would not have been a difference in the reported SPC-1 performance.

Priced Storage Configuration Diagram

16 x QLogic QLE2562 dual port HBAs

Priced Storage Configuration Components

Priced Storage Configuration

8 – QLogic QLE2562 dual-port HBAs

Fujitsu Storage Systems ETERNUS DX600 S3

1 - DX600 S3 Control Enclosure with

- 2 Controllers (CMs) each with 64 GB cache (128 GB total)
 - 4 FC Channel Adapters (CAs) each with 2 – 16 Gbps FC host ports
 - (8 ports per CM, 16 ports total)
 - 4 SAS Expander Drive Interfaces with QSFP 12 Gbps SAS-3
 - (2 SAS-3 x4 links per interface,
 - 8 SAS-3 x4 links total and used)

45 – 400 GB SAS MLC 2.5" SSD storage devices

4 - ETERNUS DX600 S3 Drive Enclosures each with

24 – Hot Swap drive slots

2 – SAS Interface/Expander Modules with QSFP 12 Gbps SAS-3

(12 – 400 GB SAS MLC 2.5" SSD storage devices in one enclosure)

- (11 400 GB SAS MLC 2.5" SSD storage devices in each of three enclosures)
- 1 Standard Fujitsu 42U Rack with a dual 20A 240VAC PDU

In each of the following sections of this document, the appropriate Full Disclosure Report requirement, from the SPC-1 benchmark specification, is stated in italics followed by the information to fulfill the stated requirement.

CONFIGURATION INFORMATION

Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Diagram

Clause 9.4.3.4.1

A one page Benchmark Configuration (BC)/Tested Storage Configuration (TSC) diagram shall be included in the FDR...

The Benchmark Configuration (BC)/Tested Storage Configuration (TSC) is illustrated on page <u>22</u> (*Benchmark Configuration/Tested Storage Configuration Diagram*).

Storage Network Configuration

<u>Clause 9.4.3.4.1</u>

•••

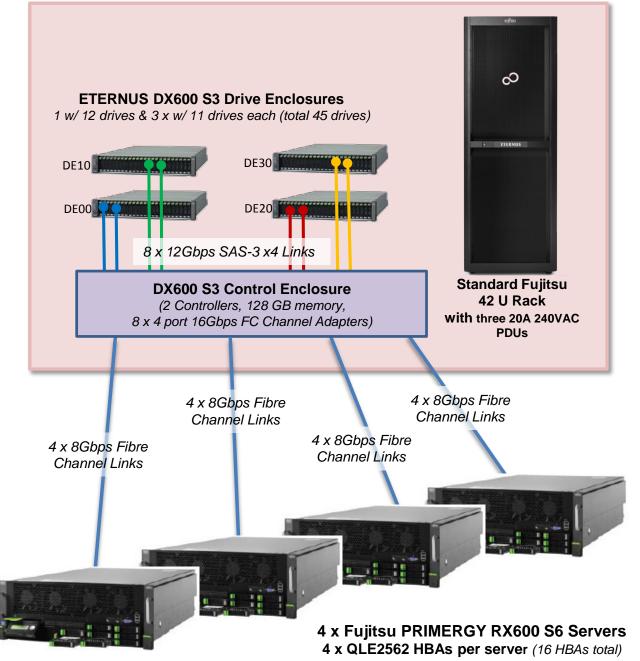
5. If the TSC contains network storage, the diagram will include the network configuration. If a single diagram is not sufficient to illustrate both the Benchmark Configuration and network configuration in sufficient detail, the Benchmark Configuration diagram will include a high-level network illustration as shown in Figure 9-8. In that case, a separate, detailed network configuration diagram will also be included as described in Clause 9.4.3.4.2.

Clause 9.4.3.4.2

If a storage network was configured as a part of the Tested Storage Configuration and the Benchmark Configuration diagram described in Clause 9.4.3.4.1 contains a high-level illustration of the network configuration, the Executive Summary will contain a one page topology diagram of the storage network as illustrated in Figure 9-9.

The Benchmark Configuration (BC)/Tested Storage Configuration (TSC) utilized direct attached storage.

Host System(s) and Tested Storage Configuration (TSC) Table of Components


Clause 9.4.3.4.3

The FDR will contain a table that lists the major components of each Host System and the Tested Storage Configuration (TSC).

The Host System(s) and TSC table of components may be found on page <u>23</u> (<u>Host System</u> <u>and Tested Storage Configuration Components</u>).

Benchmark Configuration/Tested Storage Configuration Diagram

SPC BENCHMARK 1™ V1.14 FULL DI Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

FULL DISCLOSURE REPORT

Host System and Tested Storage Configuration Components

Host Systems
4 – Fujitsu PRIMERGY RX600 S6 Servers, each with:
 4 – Intel Xeon 2.67 GHz processor E7-8837 each with 8 cores, 24 MB cache
64 GB main memory
Red Hat Enterprise Linux Server release 6.2
PCI-Express 2.0
Priced Storage Configuration
8 – QLogic QLE2562 dual-port HBAs
Fujitsu Storage Systems ETERNUS DX600 S3
1 – DX600 S3 Control Enclosure with
 2 - Controllers (CMs) each with 64 GB cache (128 GB total) 4 - FC Channel Adapters (CAs) each with 4 - 16 Gbps FC host ports (16 ports per CM, 32 ports total and 16 ports used) 4 - SAS Expander Drive Interfaces with QSFP 12 Gbps SAS-3 (2 - SAS-3 x4 links per interface, 8 - SAS-3 x4 links total and used)
45 – 400 GB SAS MLC 2.5" SSD storage devices
 4 – ETERNUS DX600 S3 Drive Enclosures each with 24 – Hot Swap drive slots 2 – SAS Interface/Expander Modules with QSFP 12 Gbps SAS-3
(12 – 400 GB SAS MLC 2.5" SSD storage devices in one enclosure)
(11 – 400 GB SAS MLC 2.5" SSD storage devices in each of three enclosures)
1 – Standard Fujitsu 42U Rack with 3 dual 20A 240VAC PDUs

Customer Tunable Parameters and Options

<u>Clause 9.4.3.5.1</u>

All Benchmark Configuration (BC) components with customer tunable parameter and options that have been altered from their default values must be listed in the FDR. The FDR entry for each of those components must include both the name of the component and the altered value of the parameter or option. If the parameter name is not self-explanatory to a knowledgeable practitioner, a brief description of the parameter's use must also be included in the FDR entry.

<u>Appendix B: Customer Tunable Parameters and Options</u> on page <u>67</u> contains the customer tunable parameters and options that have been altered from their default values for this benchmark.

Tested Storage Configuration (TSC) Description

<u>Clause 9.4.3.5.2</u>

The FDR must include sufficient information to recreate the logical representation of the TSC. In addition to customer tunable parameters and options (Clause 4.2.4.5.3), that information must include, at a minimum:

- A diagram and/or description of the following:
 - > All physical components that comprise the TSC. Those components are also illustrated in the BC Configuration Diagram in Clause 9.2.4.4.1 and/or the Storage Network Configuration Diagram in Clause 9.2.4.4.2.
 - > The logical representation of the TSC, configured from the above components that will be presented to the Workload Generator.
- Listings of scripts used to create the logical representation of the TSC.
- If scripts were not used, a description of the process used with sufficient detail to recreate the logical representation of the TSC.

<u>Appendix C: Tested Storage Configuration (TSC) Creation</u> on page <u>68</u> contains the detailed information that describes how to create and configure the logical TSC.

SPC-1 Workload Generator Storage Configuration

<u>Clause 9.4.3.5.3</u>

The FDR must include all SPC-1 Workload Generator storage configuration commands and parameters.

The SPC-1 Workload Generator storage configuration commands and parameters for this measurement appear in <u>Appendix D: SPC-1 Workload Generator Storage Commands and</u> <u>Parameters</u> on page <u>73</u>.

ASU Pre-Fill

<u>Clause 5.3.3</u>

Each of the three SPC-1 ASUs (ASU-1, ASU-2 and ASU-3) is required to be completely filled with specified content prior to the execution of audited SPC-1 Tests. The content is required to consist of random data pattern such as that produced by an SPC recommended tool.

The configuration file used to complete the required ASU pre-fill appears in <u>Appendix</u> D: <u>SPC-1 Workload Generator Storage Commands and Parameters</u> on page <u>73</u>.

SPC-1 DATA REPOSITORY

This portion of the Full Disclosure Report presents the detailed information that fully documents the various SPC-1 storage capacities and mappings used in the Tested Storage Configuration. <u>SPC-1 Data Repository Definitions</u> on page <u>63</u> contains definitions of terms specific to the SPC-1 Data Repository.

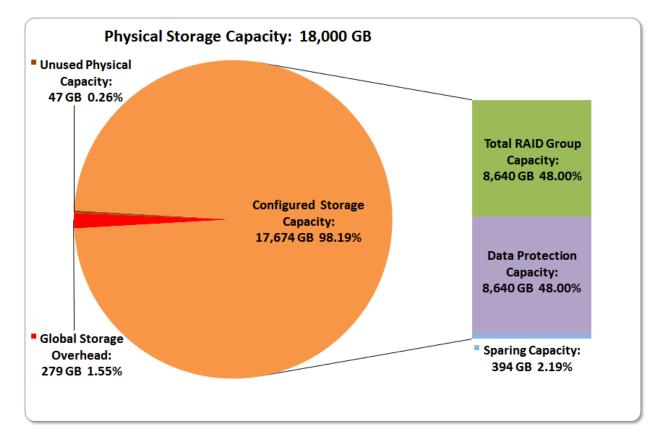
Storage Capacities and Relationships

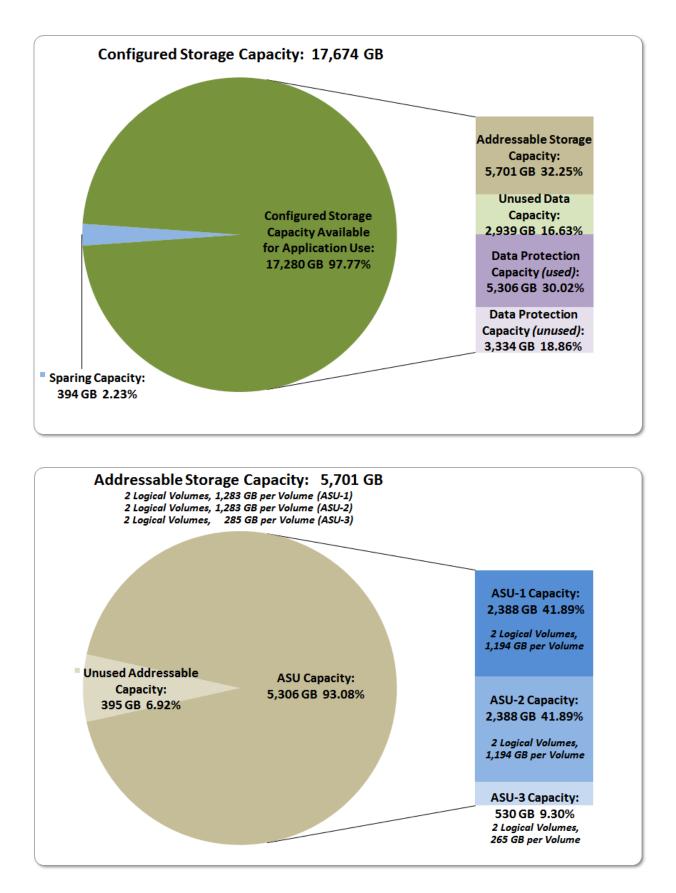
Clause 9.4.3.6.1

Two tables and four charts documenting the storage capacities and relationships of the SPC-1 Storage Hierarchy (Clause 2.1) shall be included in the FDR. ... The capacity value in each chart may be listed as an integer value, for readability, rather than the decimal value listed in the table below.

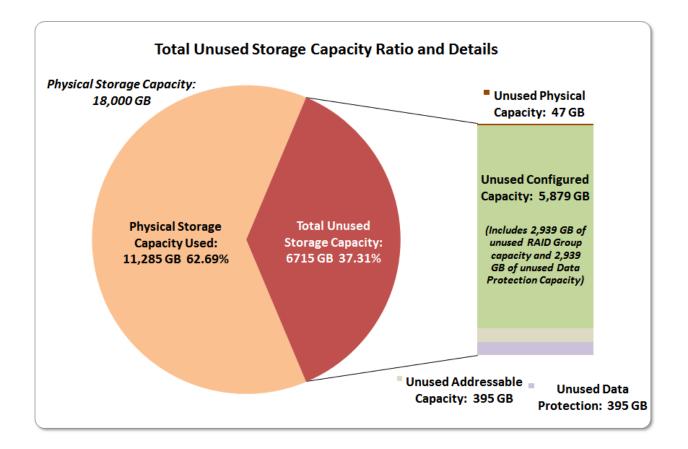
SPC-1 Storage Capacities

The Physical Storage Capacity consisted of 18,000.000 GB distributed over 45 solid state devices (SSDs) each with a formatted capacity of 400.000 GB. There was 47.245 GB (0.26%) of Unused Storage within the Physical Storage Capacity. Global Storage Overhead consisted of 279.234 GB (1.55%) of the Physical Storage Capacity. There was 5,878.682 GB (33.26%) of Unused Storage within the Configured Storage Capacity. The Total ASU Capacity utilized 93.08% of the Addressable Storage Capacity resulting in 394.523 GB (6.92%) of Unused Storage within the Addressable Storage Capacity. The Data Protection (*Mirroring*) capacity was 8,639.864 GB of which 5,306.000 GB was utilized. The total Unused Storage capacity was 6,714.927 GB.


Note: The configured Storage Devices may include additional storage capacity reserved for system overhead, which is not accessible for application use. That storage capacity may not be included in the value presented for Physical Storage Capacity.


SPC-1 Storage Capacities					
Storage Hierarchy Component	Units	Capacity			
Total ASU Capacity	Gigabytes (GB)	5,306.000			
Addressable Storage Capacity	Gigabytes (GB)	5,700.523			
Configured Storage Capacity	Gigabytes (GB)	17,673.522			
Physical Storage Capacity	Gigabytes (GB)	18,000.000			
Data Protection (Mirroring)	Gigabytes (GB)	8,639.846			
Required Storage (sparing capacity)	Gigabytes (GB)	393.795			
Global Storage Overhead	Gigabytes (GB)	279.234			
Total Unused Storage	Gigabytes (GB)	6,714.972			

SPC-1 Storage Hierarchy Ratios


	Addressable Storage Capacity	Configured Storage Capacity	Physical Storage Capacity
Total ASU Capacity	93.08%	30.02%	29.48%
Required for Data Protection (Mirroring)		48.89%	48.00%
Addressable Storage Capacity		32.25%	31.67%
Required Storage (sparing capacity)		2.23%	2.19%
Configured Storage Capacity			98.18%
Global Storage Overhead			1.55%
Unused Storage:			
Addressable	6.92%		
Configured		33.26%	
Physical			0.26%

SPC-1 Storage Capacity Charts

SPC BENCHMARK 1™ V1.14 FULL DISCLOSURE REPORT Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

Storage Capacity Utilization

Clause 9.4.3.6.2

The FDR will include a table illustrating the storage capacity utilization values defined for Application Utilization (Clause 2.8.1), Protected Application Utilization (Clause 2.8.2), and Unused Storage Ratio (Clause 2.8.3).

<u>Clause 2.8.1</u>

Application Utilization is defined as Total ASU Capacity divided by Physical Storage Capacity.

<u>Clause 2.8.2</u>

Protected Application Utilization is defined as (Total ASU Capacity plus total Data Protection Capacity minus unused Data Protection Capacity) divided by Physical Storage Capacity.

<u>Clause 2.8.3</u>

Unused Storage Ratio is defined as Total Unused Capacity divided by Physical Storage Capacity and may not exceed 45%.

SPC-1 Storage Capacity Utilization				
Application Utilization	29.48%			
Protected Application Utilization	58.96%			
Unused Storage Ratio	37.31%			

Logical Volume Capacity and ASU Mapping

<u>Clause 9.4.3.6.3</u>

A table illustrating the capacity of each ASU and the mapping of Logical Volumes to ASUs shall be provided in the FDR. ... Logical Volumes shall be sequenced in the table from top to bottom per its position in the contiguous address space of each ASU. The capacity of each Logical Volume shall be stated. ... In conjunction with this table, the Test Sponsor shall provide a complete description of the type of data protection (see Clause 2.4.5) used on each Logical Volume.

Logical Volume Capacity and Mapping				
ASU-1 (2,388.000 GB)	ASU-2 (2,388.000 GB)	ASU-3 (530.000 GB)		
2 Logical Volumes 1,282.607 GB per Logical Volume (1,194.000 GB used per Logical Volume)	2 Logical Volumes 1,282.607 GB per Logical Volume (1,194.000 GB used per Logical Volume)	2 Logical Volumes 285.048 GB per Logical Volume (265.000 GB used per Logical Volume)		

The Data Protection Level used for all Logical Volumes was <u>Protected 2</u> using *Mirroring* as described on page <u>12</u>. See "ASU Configuration" in the <u>IOPS Test Results File</u> for more detailed configuration information.

SPC-1 BENCHMARK EXECUTION RESULTS

This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs. An <u>SPC-1 glossary</u> on page 63 contains definitions of terms specific to the SPC-1 Tests, Test Phases, and Test Runs.

<u>Clause 5.4.3</u>

The Tests must be executed in the following sequence: Primary Metrics, Repeatability, and Data Persistence. That required sequence must be uninterrupted from the start of Primary Metrics to the completion of Persistence Test Run 1. Uninterrupted means the Benchmark Configuration shall not be power cycled, restarted, disturbed, altered, or adjusted during the above measurement sequence. If the required sequence is interrupted other than for the Host System/TSC power cycle between the two Persistence Test Runs, the measurement is invalid.

SPC-1 Tests, Test Phases, and Test Runs

The SPC-1 benchmark consists of the following Tests, Test Phases, and Test Runs:

- Primary Metrics Test
 - > Sustainability Test Phase and Test Run
 - > IOPS Test Phase and Test Run
 - > Response Time Ramp Test Phase
 - \circ 95% of IOPS Test Run
 - 90% of IOPS Test Run
 - $_{\circ}$ ~~ 80% of IOPS Test Run
 - $_{\circ}$ ~50% of IOPS Test Run
 - 10% of IOPS Test Run (LRT)

• Repeatability Test

- Repeatability Test Phase 1
 - 10% of IOPS Test Run (LRT)
 - IOPS Test Run
- > Repeatability Test Phase 2
 - 10% of IOPS Test Run (LRT)
 - IOPS Test Run
- Data Persistence Test
 - > Data Persistence Test Run 1
 - > Data Persistence Test Run 2

Each Test is an atomic unit that must be executed from start to finish before any other Test, Test Phase, or Test Run may be executed.

The results from each Test, Test Phase, and Test Run are listed below along with a more detailed explanation of each component.

"Ramp-Up" Test Runs

<u>Clause 5.3.13</u>

In order to warm-up caches or perform the initial ASU data migration in a multi-tier configuration, a Test Sponsor may perform a series of "Ramp-Up" Test Runs as a substitute for an initial, gradual Ramp-Up.

Clause 5.3.13.3

The "Ramp-Up" Test Runs will immediately precede the Primary Metrics Test as part of the uninterrupted SPC-1 measurement sequence.

Clause 9.4.3.7.1

If a series of "Ramp-Up" Test Runs were included in the SPC-1 measurement sequence, the FDR shall report the duration (ramp-up and measurement interval), BSU level, SPC-1 IOPS and average response time for each "Ramp-Up" Test Run in an appropriate table.

There were no "Ramp-Up" Test Runs executed.

Primary Metrics Test - Sustainability Test Phase

Clause 5.4.4.1.1

The Sustainability Test Phase has exactly one Test Run and shall demonstrate the maximum sustainable I/O Request Throughput within at least a continuous eight (8) hour Measurement Interval. This Test Phase also serves to insure that the TSC has reached Steady State prior to reporting the final maximum I/O Request Throughput result (SPC-1 IOPSTM).

Clause 5.4.4.1.2

The computed I/O Request Throughput of the Sustainability Test must be within 5% of the reported SPC-1 $IOPS^{TM}$ result.

Clause 5.4.4.1.4

The Average Response Time, as defined in Clause 5.1.1, will be computed and reported for the Sustainability Test Run and cannot exceed 30 milliseconds. If the Average Response time exceeds that 30-milliseconds constraint, the measurement is invalid.

Clause 9.4.3.7.2

For the Sustainability Test Phase the FDR shall contain:

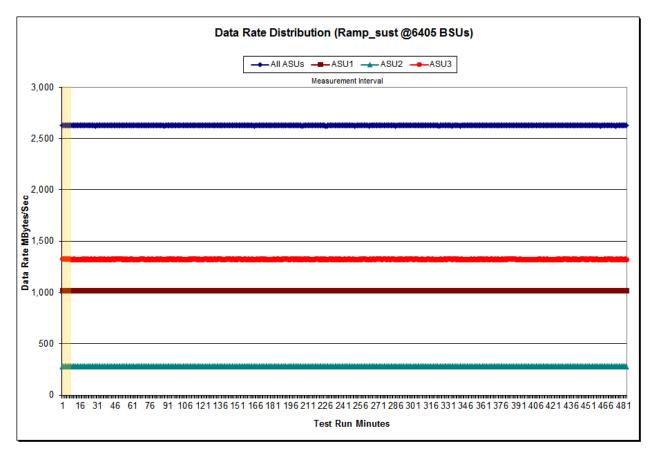
- 1. A Data Rate Distribution graph and data table.
- 2. I/O Request Throughput Distribution graph and data table.
- 3. A Response Time Frequency Distribution graph and table.
- 4. An Average Response Time Distribution graph and table.
- 5. The human readable Test Run Results File produced by the Workload Generator (may be included in an appendix).
- 6. A listing or screen image of all input parameters supplied to the Workload Generator (may be included in an appendix).
- 7. The Measured Intensity Multiplier for each I/O stream.
- 8. The variability of the Measured Intensity Multiplier, as defined in Clause 5.3.13.3.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> <u>E: SPC-1 Workload Generator Input Parameters</u> on Page <u>77</u>.

Sustainability Test Results File

A link to the test results file generated from the Sustainability Test Run is listed below.

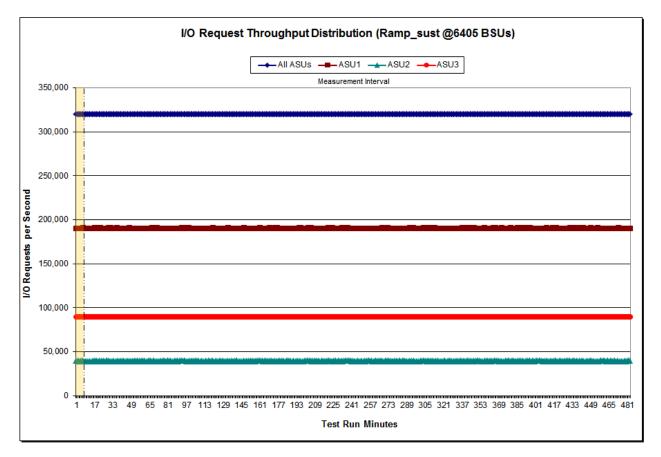

Sustainability Test Results File

Sustainability – Data Rate Distribution Data (MB/second)

The Sustainability Data Rate table of data is not embedded in this document due to its size. The table is available via the following URL:

Sustainability Data Rate Table

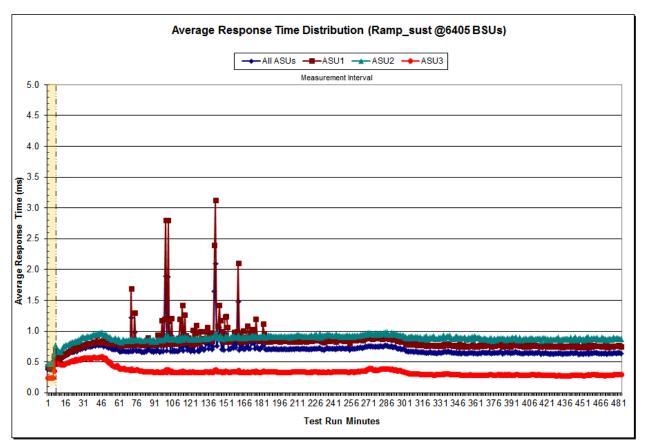
Sustainability – Data Rate Distribution Graph


SPC BENCHMARK 1[™] V1.14 FULL DISCLOSURE REPORT Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

Sustainability – I/O Request Throughput Distribution Data

The Sustainability I/O Request Throughput table of data is not embedded in this document due to its size. The table is available via the following URL:

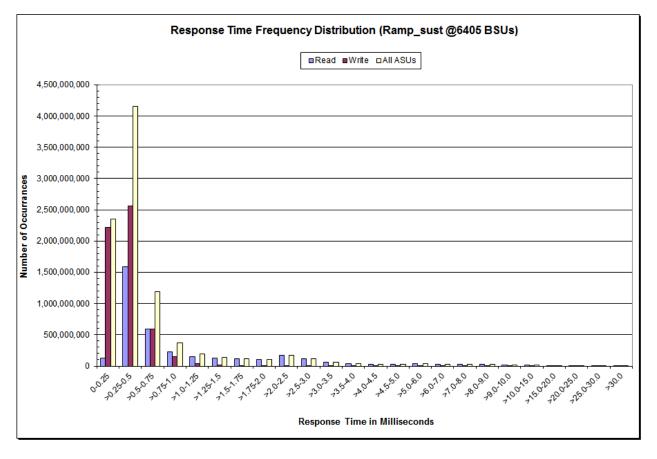
Sustainability I/O Request Throughput Table


Sustainability – I/O Request Throughput Distribution Graph

Sustainability - Average Response Time (ms) Distribution Data

The Sustainability Average Response Time table of data is not embedded in this document due to its size. The table is available via the following URL:

Sustainability Average Response Time Table



Sustainability – Average Response Time (ms) Distribution Graph

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	131,407,260	1,587,161,123	595,116,144	224,900,430	149,885,579	129,109,656	115,870,264	102,980,049
Write	2,221,736,397	2,563,210,483	591,458,609	144,049,807	40,046,746	13,121,529	5,052,357	2,072,216
All ASUs	2,353,143,657	4,150,371,606	1,186,574,753	368,950,237	189,932,325	142,231,185	120,922,621	105,052,265
ASU1	1,172,040,559	2,396,597,383	761,417,992	252,386,715	141,461,470	111,865,813	97,090,455	84,948,595
ASU2	270,568,265	455,916,486	139,056,664	50,403,221	29,695,282	23,989,185	21,240,004	18,985,185
ASU3	910,534,833	1,297,857,737	286,100,097	66,160,301	18,775,573	6,376,187	2,592,162	1,118,485
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	167,401,787	113,850,360	61,156,155	41,973,159	31,579,958	25,991,343	41,362,301	31,924,098
Write	1,493,150	673,372	426,285	287,045	210,564	190,259	357,518	211,811
All ASUs	168,894,937	114,523,732	61,582,440	42,260,204	31,790,522	26,181,602	41,719,819	32,135,909
ASU1	135,900,547	90,157,421	47,953,761	32,955,056	24,813,862	20,496,132	32,734,052	25,396,651
ASU2	32,162,484	23,986,921	13,393,092	9,150,400	6,866,415	5,594,574	8,832,713	6,657,256
ASU3	831,906	379,390	235,587	154,748	110,245	90,896	153,054	82,002
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	26,893,913	22,597,765	15,501,523	19,154,601	396,740	67,414	59,568	1,158,139
Write	76,009	31,923	29,732	112,483	31,825	29,636	29,265	724,029
All ASUs	26,969,922	22,629,688	15,531,255	19,267,084	428,565	97,050	88,833	1,882,168
ASU1	21,463,717	17,952,074	12,203,213	14,850,125	343,799	92,723	86,285	1,859,477
ASU2	5,478,331	4,666,605	3,318,204	4,384,790	84,444	4,273	2,519	22,280
ASU3	27,874	11,009	9,838	32,169	322	54	29	411

Sustainability - Response Time Frequency Distribution Data

Sustainability - Response Time Frequency Distribution Graph

SPC BENCHMARK 1™ V1.14 Fujitsu Limited FULL DISCLOSURE REPORT

Sustainability – Measured Intensity Multiplier and Coefficient of Variation

<u>Clause 3.4.3</u>

IM – *Intensity Multiplier:* The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – **Measured Intensity Multiplier:** The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV – Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
ІМ	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0250	0.2810
COV	0.001	0.000	0.001	0.000	0.002	0.001	0.001	0.000

Primary Metrics Test – IOPS Test Phase

Clause 5.4.4.2

The IOPS Test Phase consists of one Test Run at the 100% load point with a Measurement Interval of ten (10) minutes. The IOPS Test Phase immediately follows the Sustainability Test Phase without any interruption or manual intervention.

The IOPS Test Run generates the SPC-1 IOPS[™] primary metric, which is computed as the I/O Request Throughput for the Measurement Interval of the IOPS Test Run.

The Average Response Time is computed for the IOPS Test Run and cannot exceed 30 milliseconds. If the Average Response Time exceeds the 30 millisecond constraint, the measurement is invalid.

Clause 9.4.3.7.3

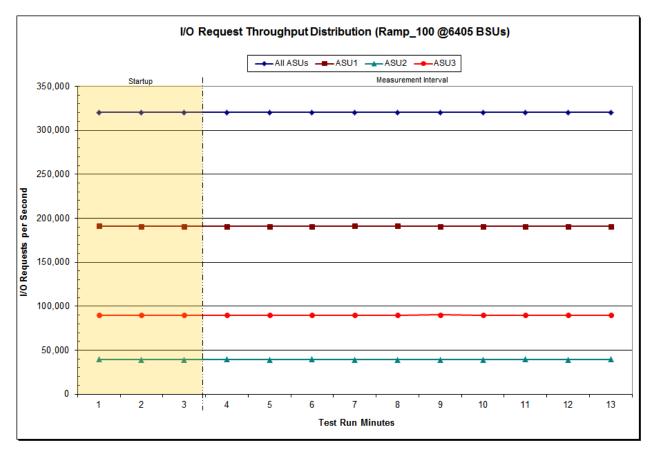
For the IOPS Test Phase the FDR shall contain:

- 1. I/O Request Throughput Distribution (data and graph).
- 2. A Response Time Frequency Distribution.
- 3. An Average Response Time Distribution.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied to the Workload Generator.
- 6. The total number of I/O Requests completed in the Measurement Interval as well as the number of I/O Requests with a Response Time less than or equal to 30 milliseconds and the number of I/O Requests with a Response Time greater than 30 milliseconds.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> <u>E: SPC-1 Workload Generator Input Parameters</u> on Page <u>77</u>.

IOPS Test Results File


A link to the test results file generated from the IOPS Test Run is listed below.

IOPS Test Results File

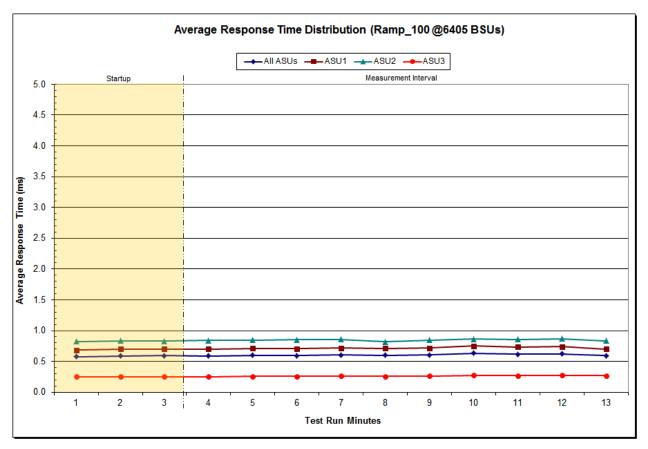
4,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	14:00:08	14:03:09	0-2	0:03:01
Measurement Interval	14:03:09	14:13:09	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	320,352.42	190,950.78	39,422.95	89,978.68
1	320,178.08	190,841.70	39,361.60	89,974.78
2	320,246.73	190,844.38	39,376.18	90,026.17
3	320,226.33	190,847.93	39,396.58	89,981.82
4	320,179.07	190,836.02	39,365.67	89,977.38
5	320,199.07	190,877.78	39,406.42	89,914.87
6	320,230.95	190,963.87	39,380.38	89,886.70
7	320,283.87	190,947.83	39,349.38	89,986.65
8	320,197.18	190,810.17	39,348.53	90,038.48
9	320,175.02	190,834.88	39,352.05	89,988.08
10	320,146.80	190,782.38	39,396.95	89,967.47
11	320,182.53	190,828.02	39,373.58	89,980.93
12	320,242.70	190,791.23	39,450.98	90,000.48
Average	320,206.35	190,852.01	39,382.05	89,972.29

IOPS Test Run – I/O Request Throughput Distribution Data

IOPS Test Run – I/O Request Throughput Distribution Graph

SPC BENCHMARK 1^{TM} V1.14

FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

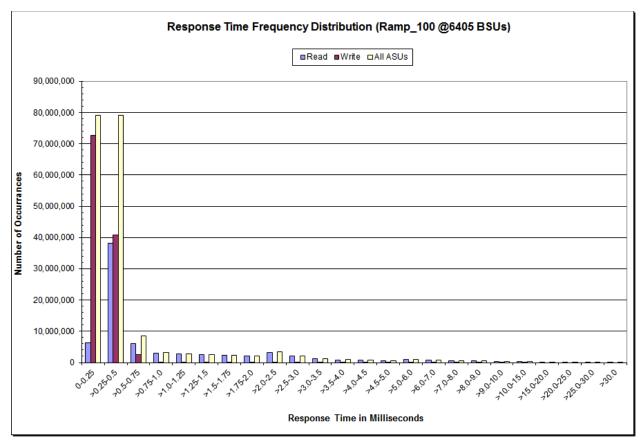
4,010 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	14:00:08	14:03:09	0-2	0:03:01
Measurement Interval	14:03:09	14:13:09	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.58	0.68	0.82	0.25
1	0.59	0.70	0.84	0.25
2	0.59	0.70	0.83	0.25
3	0.59	0.70	0.84	0.25
4	0.60	0.71	0.85	0.26
5	0.60	0.70	0.85	0.26
6	0.61	0.72	0.86	0.26
7	0.60	0.71	0.82	0.26
8	0.60	0.71	0.84	0.27
9	0.63	0.75	0.86	0.27
10	0.62	0.73	0.86	0.27
11	0.62	0.74	0.87	0.27
12	0.60	0.70	0.84	0.27
A verage	0.61	0.72	0.85	0.26

IOPS Test Run – Average Response Time (ms) Distribution Data

IOPS Test Run - Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1[™] V1.14 Fujitsu Limited

FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limitea Fujitsu Storage Systems ETERNUS DX600 S3

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	6,356,811	38,279,118	6,101,281	3,045,396	2,726,658	2,524,337	2,283,431	2,020,812
Write	72,773,386	40,942,143	2,483,368	99,818	10,600	5,051	4,053	3,266
All ASUs	79,130,197	79,221,261	8,584,649	3,145,214	2,737,258	2,529,388	2,287,484	2,024,078
ASU1	41,410,451	47,300,563	5,724,930	2,517,316	2,237,614	2,065,723	1,860,133	1,638,026
ASU2	8,795,820	8,548,666	1,261,418	569,400	493,904	460,129	423,952	383,180
ASU3	28,923,926	23,372,032	1,598,301	58,498	5,740	3,536	3,399	2,872
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	3,321,505	2,189,988	1,220,724	886,649	683,313	580,953	929,800	724,165
Write	4,606	3,943	2,727	1,870	1,334	945	1,218	578
All ASUs	3,326,111	2,193,931	1,223,451	888,519	684,647	581,898	931,018	724,743
ASU1	2,658,401	1,704,429	943,187	686,801	530,958	452,364	725,604	568,651
ASU2	663,660	485,958	277,834	200,116	152,593	128,784	204,572	155,723
ASU3	4,050	3,544	2,430	1,602	1,096	750	842	369
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	614,553	512,022	346,775	427,235	7,428	197	87	661
Write	342	181	154	110	3	1	6	3
All ASUs	614,895	512,203	346,929	427,345	7,431	198	93	664
ASU1	485,495	402,203	269,429	322,582	5,352	147	79	617
ASU2	129,214	109,916	77,452	104,721	2,078	51	9	47
ASU3	186	84	48	42	1	-	5	-

IOPS Test Run – Response Time Frequency Distribution Data

SPC BENCHMARK 1^{TM} V1.14

FULL DISCLOSURE REPORT

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

IOPS Test Run – I/O Request Information

	I/O Requests Completed in the Measurement Interval	I/O Requests Completed with Response Time = or < 30 ms	I/O Requests Completed with Response Time > 30 ms
I	192,123,605	192,122,941	664

IOPS Test Run – Measured Intensity Multiplier and Coefficient of Variation

<u>Clause 3.4.3</u>

IM – *Intensity Multiplier:* The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

<u>Clauses 5.1.10 and 5.3.15.2</u>

MIM – **Measured Intensity Multiplier:** The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV – Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
ІМ	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.001	0.000	0.001	0.000	0.002	0.001	0.001	0.000

Primary Metrics Test - Response Time Ramp Test Phase

<u>Clause 5.4.4.3</u>

The Response Time Ramp Test Phase consists of five Test Runs, one each at 95%, 90%, 80%, 50%, and 10% of the load point (100%) used to generate the SPC-1 IOPSTM primary metric. Each of the five Test Runs has a Measurement Interval of ten (10) minutes. The Response Time Ramp Test Phase immediately follows the IOPS Test Phase without any interruption or manual intervention.

The five Response Time Ramp Test Runs, in conjunction with the IOPS Test Run (100%), demonstrate the relationship between Average Response Time and I/O Request Throughput for the Tested Storage Configuration (TSC) as illustrated in the response time/throughput curve on page 16.

In addition, the Average Response Time measured during the 10% Test Run is the value for the SPC-1 LRTTM metric. That value represents the Average Response Time of a lightly loaded TSC.

Clause 9.4.3.7.4

The following content shall appear in the FDR for the Response Time Ramp Phase:

- 1. A Response Time Ramp Distribution.
- 2. The human readable Test Run Results File produced by the Workload Generator for each Test Run within the Response Time Ramp Test Phase.
- 3. For the 10% Load Level Test Run (SPC-1 LRT[™] metric) an Average Response Time Distribution.
- 4. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> <u>E: SPC-1 Workload Generator Input Parameters</u> on Page <u>77</u>.

Response Time Ramp Test Results File

A link to each test result file generated from each Response Time Ramp Test Run list listed below.

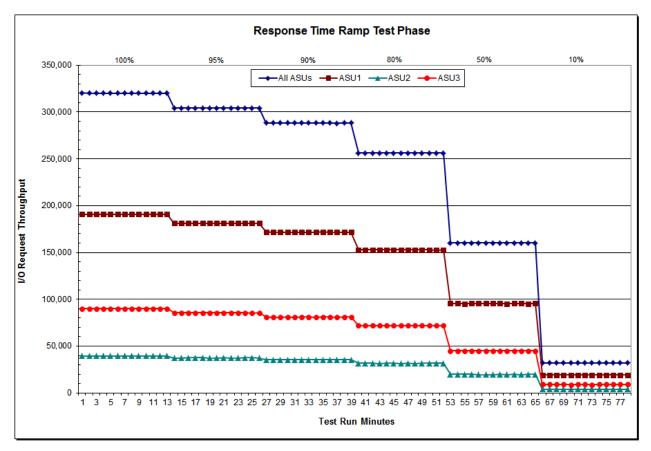
95% Load Level 90% Load Level

80% Load Level

50% Load Level

10% Load Level

Response Time Ramp Distribution (IOPS) Data

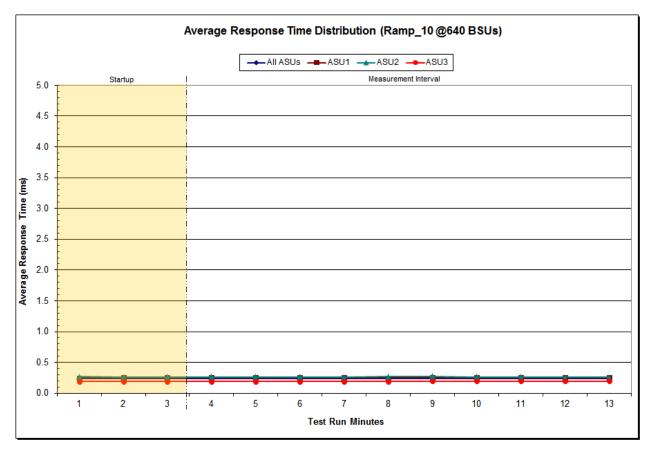

The five Test Runs that comprise the Response Time Ramp Phase are executed at 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit (BSU) load level used to produce the SPC-1 IOPSTM primary metric. The 100% BSU load level is included in the following Response Time Ramp data table and graph for completeness.

100% Load Level:	1				95% Load Level:				
6,405 BSUs	Start	Stop	Interval	Duration	6,084 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	14:00:08	14:03:09	0-3	0:03:01	Start-Up/Ramp-Up	14:13:30	14:16:31	0-3	0:03:01
Measurement Interval	14:03:09	14:13:09	3-12	0:10:00	Measurement Interval	14:16:31	14:26:31	3-12	0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	320,352.42	190,950.78	39,422.95	89,978.68	0	304,176.72	181,312.02	37,406.50	85,458.20
1	320,178.08	190,841.70	39,361.60	89,974.78	1	304,176.63	181,308.35	37,413.18	85,455.10
2	320,246.73	190,844.38	39,376.18	90,026.17	2	304,264.98	181,270.85	37,436.57	85,557.57
3	320,226.33	190,847.93	39,396.58	89,981.82	3	304,173.52	181,305.67	37,420.00	85,447.85
4	320,179.07	190,836.02	39,365.67	89,977.38	4	304,179.42	181,267.72	37,424.90	85,486.80
5	320,199.07	190,877.78	39,406.42	89,914.87	5	304,122.15	181,205.03	37,416.12	85,501.00
6	320,230.95	190,963.87	39,380.38	89,886.70	6	304,331.92	181,331.42	37,408.50	85,592.00
7	320,283.87	190,947.83	39,349.38	89,986.65	7	304,349.82	181,381.10	37,470.90	85,497.82
8	320,197.18	190,810.17	39,348.53	90,038.48	8	304,344.10	181,423.97	37,417.18	85,502.95
9	320,175.02	190,834.88	39,352.05	89,988.08	9	304,178.65	181,248.32	37,411.78	85,518.55
10	320,146.80	190,782.38	39,396.95	89,967.47	10	304,185.45	181,281.30	37,428.32	85,475.83
11	320,182.53	190,828.02	39,373.58	89,980.93	11	304,189.95	181,347.65	37,427.53	85,414.77
12	320,242.70	190,791.23	39,450.98	90,000.48	12	304,072.88	181,266.43	37,365.40	85,441.05
Average	320,206.35	190,852.01	39,382.05	89,972.29	Average	304,212.79	181,305.86	37,419.06	85,487.86
90% Load Level: 5,764 BSUs	Start	Stop	Interval	Duration	80% Load Level: 5,124 BSUs	Start	Stop	Interval	Duration
5,764 BSUS Start-Up/Ramp-Up	14:26:49	14:29:50	0-3		5,124 BS05 Start-Up/Ramp-Up	14:40:06	14:43:07	0-3	0:03:01
Measurement Interval	14:29:50	14:39:50	3-12		Measurement Interval	14:43:07	14:53:07	3-12	0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	288,364.23	171,894.55	35,430.32	81,039.37	0	256,153.97	152,644.53	31,516.23	71,993.20
1	288,221.30	171,819.58	35,476.15	80,925.57	1	256,277.95	152,707.80	31,553.75	72,016.40
2	288,175.22	171,745.25	35,437.30	80,992.67	2	256,154.95	152,642.90	31,530.40	71,981.65
3	288,254.83	171,811.00	35,443.62	81,000.22	3	256,133.97	152,662.07	31,475.35	71,996.55
4	288,217.93	171,822.70	35,416.33	80,978.90	4	256,192.52	152,649.47	31,559.50	71,983.55
5	288,210.08	171,738.32	35,470.70	81,001.07	5	256,275.38	152,767.42	31,518.07	71,989.90
6	288,242.82	171,780.07	35,447.78	81,014.97	6	256,209.10	152,721.57	31,476.10	72,011.43
7	288,208.55	171,809.52	35,449.03	80,950.00	7	256,124.70	152,643.97	31,542.53	71,938.20
8	288,313.60	171,884.60	35,431.07	80,997.93	8	256,185.88	152,671.48	31,506.20	72,008.20
9	288,351.28	171,814.63	35,498.00	81,038.65	9	256,285.57	152,752.15	31,515.32	72,018.10
10	288,114.03	171,719.50	35,449.47	80,945.07	10	256,201.92	152,696.35	31,523.37	71,982.20
11	288,229.10	171,724.92	35,499.63	81,004.55	11	256,061.82	152,584.92	31,523.37	71,953.53
12	288,204.28	171,749.57	35,457.40	80,997.32	12	256,178.48	152,649.57	31,530.95	71,997.97
Average	200)2020	1,1), 19101	00, 10, 110	80,992.87		256, 184.93	- ,	,	/

50% Load Level:					10% Load Level:	1			
3,202	Start	Stop	Interval	Duration	640 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	14:53:19	14:56:20	0-3	0:03:01	Start-Up/Ramp-Up	15:06:27	15:09:28	0-3	0:03:01
Measurement Interval	14:56:20	15:06:20	3-12	0:10:00	Measurement Interval	15:09:28	15:19:28	3-12	0:10:00
(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3	(60 second intervals)	All ASUs	ASU-1	ASU-2	ASU-3
0	160,139.12	95,456.45	19,706.00	44,976.67	0	32,031.30	19,095.87	3,937.02	8,998.42
1	160,112.27	95,437.88	19,692.62	44,981.77	1	32,057.53	19,110.23	3,951.00	8,996.30
2	160,082.30	95,392.68	19,716.32	44,973.30	2	32,019.12	19,082.53	3,929.83	9,006.75
3	160,113.55	95,434.93	19,699.17	44,979.45	3	32,013.20	19,096.90	3,932.52	8,983.78
4	160,064.37	95,401.12	19,691.25	44,972.00	4	31,977.50	19,069.15	3,928.45	8,979.90
5	160,150.02	95,435.27	19,686.98	45,027.77	5	32,005.58	19,058.03	3,942.92	9,004.63
6	160,133.43	95,469.80	19,685.42	44,978.22	6	31,963.93	19,026.68	3,939.82	8,997.43
7	160,127.20	95,433.78	19,701.67	44,991.75	7	31,968.80	19,055.73	3,935.05	8,978.02
8	160,038.18	95,390.73	19,674.50	44,972.95	8	31,989.18	19,065.17	3,928.28	8,995.73
9	160,122.72	95,412.35	19,714.95	44,995.42	9	32,004.10	19,082.58	3,920.67	9,000.85
10	160,105.27	95,440.08	19,666.13	44,999.05	10	32,026.52	19,078.57	3,937.32	9,010.63
11	160,074.75	95,387.57	19,721.65	44,965.53	11	31,981.33	19,048.25	3,934.92	8,998.17
12	160,075.45	95,402.05	19,692.18	44,981.22	12	32,004.85	19,079.07	3,930.70	8,995.08
Average	160,100.49	95,420.77	19,693.39	44,986.34	Average	31,993.50	19,066.01	3,933.06	8,994.42

Response Time Ramp Distribution (IOPS) Data (continued)

Response Time Ramp Distribution (IOPS) Graph



SPC BENCHMARK 1™ V1.14 FULL DISCLOSURE REPORT Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3 Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

640 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:06:27	15:09:28	0-2	0:03:01
Measurement Interval	15:09:28	15:19:28	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.23	0.25	0.27	0.19
1	0.24	0.25	0.26	0.19
2	0.23	0.25	0.26	0.19
3	0.23	0.25	0.26	0.19
4	0.23	0.25	0.26	0.19
5	0.24	0.25	0.26	0.19
6	0.23	0.25	0.26	0.19
7	0.24	0.25	0.27	0.19
8	0.24	0.25	0.27	0.19
9	0.24	0.25	0.26	0.19
10	0.24	0.25	0.26	0.19
11	0.24	0.25	0.26	0.19
12	0.23	0.25	0.26	0.19
Average	0.24	0.25	0.26	0.19

SPC-1 LRT[™] Average Response Time (ms) Distribution Data

SPC-1 LRT[™] Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1[™] V1.14 Fujitsu Limited FULL DISCLOSURE REPORT

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

SPC-1 LRT[™] (10%) – Measured Intensity Multiplier and Coefficient of Variation

<u>Clause 3.4.3</u>

IM – *Intensity Multiplier:* The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.15.3

COV – Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
ІМ	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2811	0.0699	0.2099	0.0181	0.0699	0.0349	0.2811
COV	0.003	0.001	0.003	0.001	0.006	0.002	0.003	0.001

Repeatability Test

<u>Clause 5.4.5</u>

The Repeatability Test demonstrates the repeatability and reproducibility of the SPC-1 IOPS[™] primary metric and the SPC-1 LRT[™] metric generated in earlier Test Runs.

There are two identical Repeatability Test Phases. Each Test Phase contains two Test Runs. Each of the Test Runs will have a Measurement Interval of no less than ten (10) minutes. The two Test Runs in each Test Phase will be executed without interruption or any type of manual intervention.

The first Test Run in each Test Phase is executed at the 10% load point. The Average Response Time from each of the Test Runs is compared to the SPC-1 LRT^{TM} metric. Each Average Response Time value must be less than the SPC-1 LRT^{TM} metric plus 5% or less than the SPC-1 LRT^{TM} metric plus one (1) millisecond (ms).

The second Test Run in each Test Phase is executed at the 100% load point. The I/O Request Throughput from the Test Runs is compared to the SPC-1 IOPSTM primary metric. Each I/O Request Throughput value must be greater than the SPC-1 IOPSTM primary metric minus 5%. In addition, the Average Response Time for each Test Run cannot exceed 30 milliseconds.

If any of the above constraints are not met, the benchmark measurement is invalid.

Clause 9.4.3.7.5

The following content shall appear in the FDR for each Test Run in the two Repeatability Test Phases:

- 1. A table containing the results of the Repeatability Test.
- 2. An I/O Request Throughput Distribution graph and table.
- 3. An Average Response Time Distribution graph and table.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> <u>E: SPC-1 Workload Generator Input Parameters</u> on Page <u>77</u>.

Repeatability Test Results File

The values for the SPC-1 IOPSTM, SPC-1 LRTTM, and the Repeatability Test measurements are listed in the tables below.

	SPC-1 IOPS™
Primary Metrics	320,206.35
Repeatability Test Phase 1	320,239.61
Repeatability Test Phase 2	320,199.89

The SPC-1 IOPS[™] values in the above table were generated using 100% of the specified Business Scaling Unit (BSU) load level. Each of the Repeatability Test Phase values for SPC-1 IOPS[™] must greater than 95% of the reported SPC-1 IOPS[™] Primary Metric.

	SPC-1 LRT™
Primary Metrics	0.24 ms
Repeatability Test Phase 1	0.24 ms
Repeatability Test Phase 2	0.24 ms

The average response time values in the SPC-1 LRT[™] column were generated using 10% of the specified Business Scaling Unit (BSU) load level. Each of the Repeatability Test Phase values for SPC-1 LRT[™] must be less than 105% of the reported SPC-1 LRT[™] Primary Metric or less than the reported SPC-1 LRT[™] Primary Metric plus one (1) millisecond (ms).

A link to the test result file generated from each Repeatability Test Run is listed below.

Repeatability Test Phase 1, Test Run 1 (LRT) Repeatability Test Phase 1, Test Run 2 (IOPS) Repeatability Test Phase 2, Test Run 1 (LRT) Repeatability Test Phase 2, Test Run 2 (IOPS) 0 1 2

3

4 5

6

7

8

9

10

11

12

31,993.33

32,002.08

31,962.42

32,016.57

32,043.47

31,972.37

32,031.68

31,998.23

32,001.72

32,004.70

32,002.66

640 BSUs

A verage

Start-Up/Ramp-Up Measurement Interval 60 second intervals

αΤ – I/O Request Throughput Distribution I											
Start	Stop	Interval	Duration								
15:20:52	15:23:52	0-2	0:03:00								
15:23:52	15:33:52	3-12	0:10:00								
All ASUs	ASU1	ASU2	ASU3								
32,052.45	19,109.48	3,933.57	9,009.40								
32,012.92	19,086.20	3,951.07	8,975.65								
32,017.52	19,078.70	3,941.48	8,997.33								

3,938.37

3,929.98

3,935.85

3,934.38

3,927.95

3,921.78

3,932.40

3,944.12

3,961.20

3,940.92

3,936.70

8,985.23

8,989.98

8,984.65

8,986.40

9,006.53

8,986.23

9,012.40

8,997.63

8,991.57

8,998.55

8,993.92

Repeatability 1 LR Data

19,069.73

19,082.12

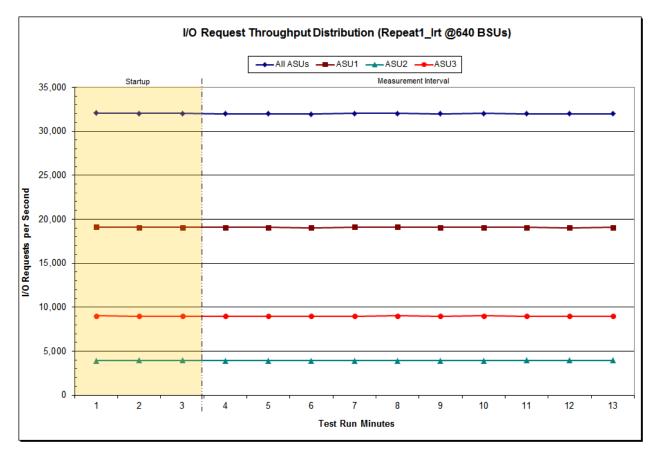
19,041.92

19,095.78

19,108.98

19,064.35

19,086.88


19,056.48

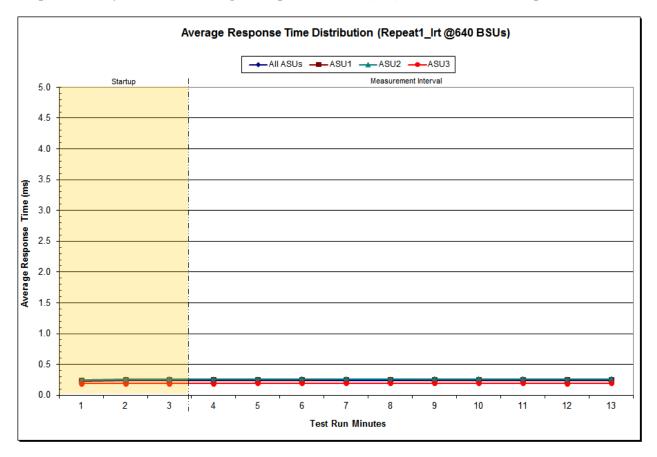
19,048.95

19,065.23

19,072.04

Repeatability 1 LRT	- I/O Request	Throughput	Distribution	Graph

SPC BENCHMARK 1^{TM} V1.14 Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3


FULL DISCLOSURE REPORT

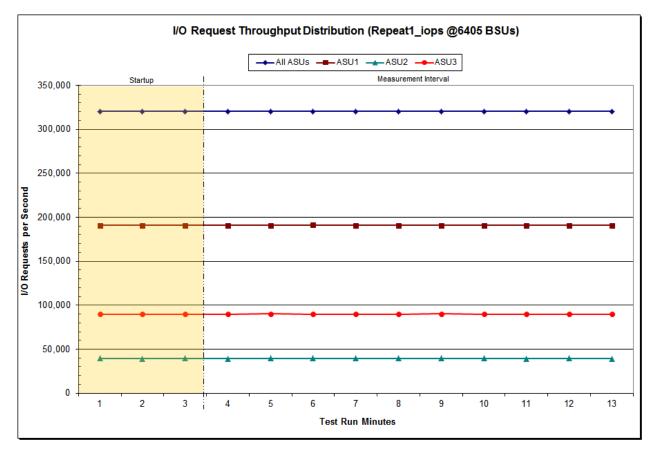
Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

640 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:20:52	15:23:52	0-2	0:03:00
Measurement Interval	15:23:52	15:33:52	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.23	0.24	0.25	0.19
1	0.23	0.25	0.26	0.19
2	0.23	0.25	0.26	0.19
3	0.24	0.25	0.26	0.19
4	0.24	0.25	0.26	0.19
5	0.24	0.25	0.26	0.19
6	0.24	0.26	0.26	0.19
7	0.24	0.26	0.26	0.19
8	0.24	0.25	0.26	0.19
9	0.24	0.25	0.26	0.19
10	0.24	0.25	0.26	0.19
11	0.24	0.25	0.26	0.19
12	0.24	0.25	0.26	0.19
Average	0.24	0.25	0.26	0.19

Repeatability 1 LRT –Average Response Time (ms) Distribution Data

Repeatability 1 LRT - Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1™ V1.14 FULL DI Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3


FULL DISCLOSURE REPORT

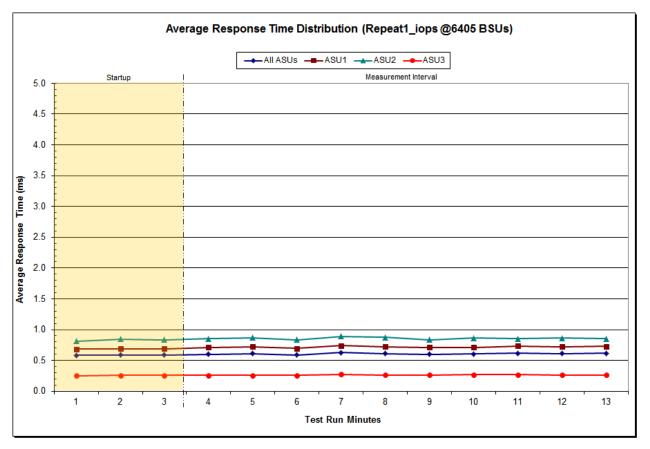
Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

6,405 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:34:23	15:37:24	0-2	0:03:01
Measurement Interval	15:37:24	15:47:24	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	320,222.50	190,901.37	39,399.45	89,921.68
1	320,177.17	190,884.48	39,379.98	89,912.70
2	320,224.25	190,819.52	39,445.80	89,958.93
3	320,171.02	190,816.08	39,359.07	89,995.87
4	320,303.95	190,877.83	39,390.77	90,035.35
5	320,402.15	190,982.73	39,390.43	90,028.98
6	320,089.45	190,737.73	39,406.08	89,945.63
7	320,254.65	190,864.23	39,405.22	89,985.20
8	320,322.55	190,878.17	39,405.00	90,039.38
9	320,252.62	190,863.65	39,396.05	89,992.92
10	320,240.33	190,908.47	39,373.65	89,958.22
11	320,097.68	190,795.03	39,398.22	89,904.43
12	320,261.65	190,925.12	39,355.82	89,980.72
Average	320,239.61	190,864.91	39, 388.03	89,986.67

Repeatability 1 IOPS – I/O Request Throughput Distribution Data

Repeatability 1 IOPS – I/O Request Throughput Distribution Graph

SPC BENCHMARK 1[™] V1.14 Fujitsu Limited FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

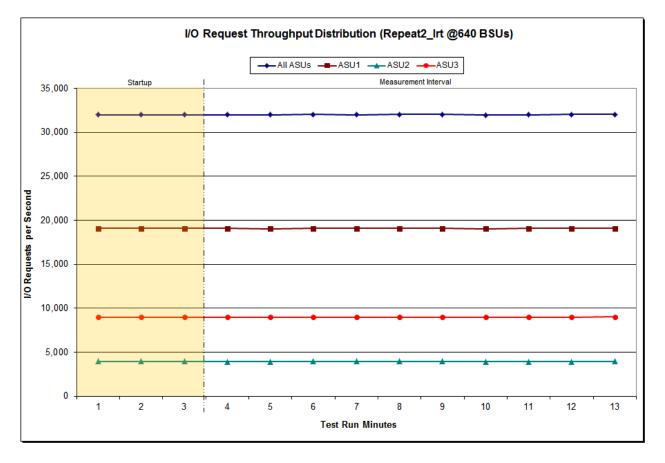
Fujitsu Limitea Fujitsu Storage Systems ETERNUS DX600 S3

6,405 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:34:23	15:37:24	0-2	0:03:01
Measurement Interval	15:37:24	15:47:24	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.58	0.69	0.81	0.25
1	0.59	0.69	0.85	0.26
2	0.59	0.69	0.84	0.26
3	0.60	0.71	0.85	0.26
4	0.61	0.72	0.87	0.26
5	0.59	0.70	0.83	0.26
6	0.63	0.74	0.89	0.27
7	0.61	0.72	0.87	0.26
8	0.60	0.71	0.83	0.26
9	0.61	0.71	0.86	0.27
10	0.62	0.73	0.85	0.27
11	0.61	0.72	0.86	0.26
12	0.61	0.73	0.85	0.26
Average	0.61	0.72	0.86	0.26

Repeatability 1 IOPS –Average Response Time (ms) Distribution Data

Repeatability 1 IOPS - Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1™ V1.14 FULL DE Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3


FULL DISCLOSURE REPORT

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

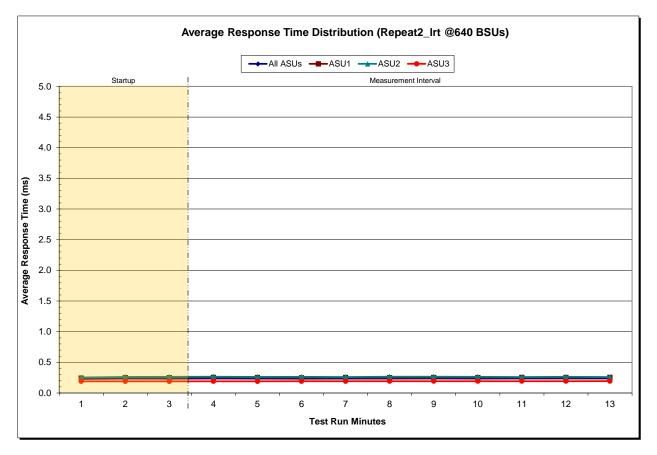
640 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:48:49	15:51:49	0-2	0:03:00
Measurement Interval	15:51:49	16:01:49	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	32,002.32	19,059.62	3,946.07	8,996.63
1	31,994.48	19,068.20	3,939.22	8,987.07
2	32,008.23	19,082.58	3,942.88	8,982.77
3	31,999.50	19,072.28	3,934.40	8,992.82
4	31,971.90	19,050.17	3,938.15	8,983.58
5	32,011.25	19,066.43	3,951.05	8,993.77
6	32,005.13	19,056.68	3,959.97	8,988.48
7	32,015.70	19,077.97	3,940.85	8,996.88
8	32,016.53	19,071.52	3,945.63	8,999.38
9	31,966.12	19,045.67	3,929.53	8,990.92
10	31,979.12	19,056.67	3,928.22	8,994.23
11	32,011.05	19,082.53	3,931.27	8,997.25
12	32,046.77	19,080.10	3,946.23	9,020.43
Average	32,002.31	19,066.00	3,940.53	8,995.78

Repeatability 2 LRT – I/O Request Throughput Distribution Data

Repeatability 2 LRT – I/O Request Throughput Distribution Graph

SPC BENCHMARK 1^{TM} V1.14

FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

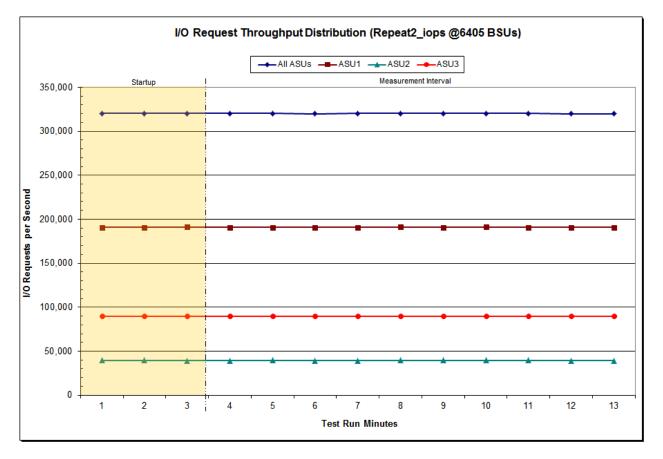
640 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	15:48:49	15:51:49	0-2	0:03:00
Measurement Interval	15:51:49	16:01:49	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.23	0.24	0.25	0.19
1	0.23	0.25	0.26	0.19
2	0.23	0.25	0.26	0.19
3	0.24	0.25	0.27	0.19
4	0.24	0.25	0.26	0.19
5	0.23	0.25	0.26	0.19
6	0.24	0.25	0.26	0.19
7	0.23	0.25	0.27	0.19
8	0.24	0.25	0.27	0.19
9	0.24	0.25	0.26	0.19
10	0.24	0.25	0.26	0.19
11	0.24	0.25	0.26	0.19
12	0.24	0.25	0.26	0.19
A verage	0.24	0.25	0.26	0.19

Repeatability 2 LRT –Average Response Time (ms) Distribution Data

Repeatability 2 LRT - Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1™ V1.14 Fujitsu Limited

FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

rujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

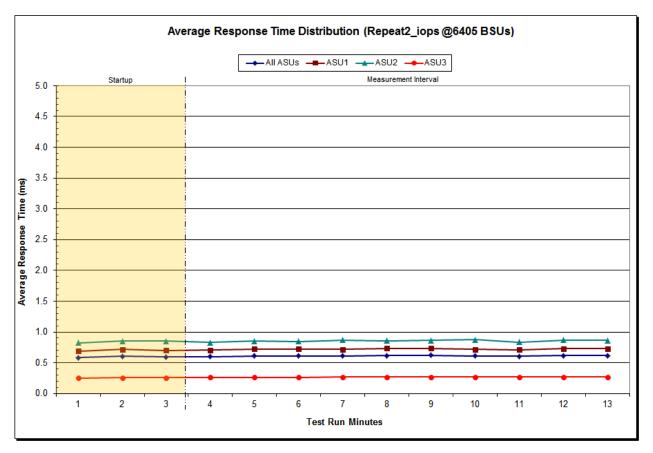
6,405 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	16:02:20	16:05:21	0-2	0:03:01
Measurement Interval	16:05:21	16:15:21	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	320,287.65	190,915.30	39,388.98	89,983.37
1	320,200.02	190,859.20	39,388.68	89,952.13
2	320,322.48	190,952.25	39,370.88	89,999.35
3	320,280.40	190,896.77	39,385.27	89,998.37
4	320,257.63	190,888.35	39,392.00	89,977.28
5	320,011.83	190,707.50	39,375.47	89,928.87
6	320,148.22	190,856.32	39,367.05	89,924.85
7	320,342.53	190,941.23	39,433.65	89,967.65
8	320,243.60	190,850.92	39,398.60	89,994.08
9	320,346.92	190,985.70	39,404.28	89,956.93
10	320,153.52	190,777.95	39,393.13	89,982.43
11	320,087.18	190,795.68	39,382.58	89,908.92
12	320,037.08	190,761.50	39,333.70	89,941.88
Average	320, 190.89	190,846.19	39,386.57	89,958.13

Repeatability 2 IOPS – I/O Request Throughput Distribution Data

Repeatability 2 IOPS – I/O Request Throughput Distribution Graph

SPC BENCHMARK 1^{TM} V1.14

FULL DISCLOSURE REPORT


Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

6,405 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	16:02:20	16:05:21	0-2	0:03:01
Measurement Interval	16:05:21	16:15:21	3-12	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	0.58	0.69	0.83	0.25
1	0.60	0.72	0.85	0.26
2	0.60	0.70	0.85	0.26
3	0.60	0.71	0.83	0.26
4	0.61	0.72	0.85	0.26
5	0.61	0.73	0.85	0.27
6	0.61	0.71	0.87	0.27
7	0.62	0.73	0.86	0.27
8	0.62	0.74	0.86	0.27
9	0.61	0.71	0.87	0.27
10	0.60	0.71	0.84	0.27
11	0.62	0.73	0.87	0.27
12	0.62	0.73	0.86	0.27
A verage	0.61	0.72	0.86	0.27

Repeatability 2 IOPS –Average Response Time (ms) Distribution Data

Repeatability 2 IOPS - Average Response Time (ms) Distribution Graph

SPC BENCHMARK 1™ V1.14 FULL DE Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

FULL DISCLOSURE REPORT

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Repeatability 1 (LRT) Measured Intensity Multiplier and Coefficient of Variation

<u>Clause 3.4.3</u>

IM – *Intensity Multiplier:* The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.10 and 5.3.15.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

<u>Clause 5.3.15.3</u>

COV – **Coefficient of Variation:** This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
ІМ	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0179	0.0700	0.0351	0.2810
COV	0.004	0.001	0.003	0.002	0.008	0.003	0.005	0.001

Repeatability 1 (IOPS)

Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.001	0.000	0.001	0.000	0.002	0.001	0.001	0.000

Repeatability 2 (LRT) Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2808	0.0701	0.2099	0.00180	0.0701	0.0350	0.2811
COV	0.005	0.001	0.003	0.002	0.006	0.003	0.004	0.001

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.000

Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation

Data Persistence Test

<u>Clause 6</u>

The Data Persistence Test demonstrates the Tested Storage Configuration (TSC):

- Is capable of maintain data integrity across a power cycle.
- Ensures the transfer of data between Logical Volumes and host systems occurs without corruption or loss.

The SPC-1 Workload Generator will write 16 block I/O requests at random over the total Addressable Storage Capacity of the TSC for ten (10) minutes at a minimum of 25% of the load used to generate the SPC-1 IOPSTM primary metric. The bit pattern selected to be written to each block as well as the address of the block will be retained in a log file.

The Tested Storage Configuration (TSC) will be shutdown and restarted using a power off/power on cycle at the end of the above sequence of write operations. In addition, any caches employing battery backup must be flushed/emptied.

The SPC-1 Workload Generator will then use the above log file to verify each block written contains the correct bit pattern.

<u>Clause 9.4.3.8</u>

The following content shall appear in this section of the FDR:

- 1. A listing or screen image of all input parameters supplied to the Workload Generator.
- 2. For the successful Data Persistence Test Run, a table illustrating key results. The content, appearance, and format of this table are specified in Table 9-12. Information displayed in this table shall be obtained from the Test Run Results File referenced below in #3.
- 3. For the successful Data Persistence Test Run, the human readable Test Run Results file produced by the Workload Generator (may be contained in an appendix).

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in <u>Appendix</u> <u>E: SPC-1 Workload Generator Input Parameters</u> on Page <u>77</u>.

Data Persistence Test Results File

A link to each test result file generated from each Data Persistence Test is listed below. <u>Persistence 1 Test Results File</u> <u>Persistence 2 Test Results File</u>

Data Persistence Test Results

Data Persistence Test Results						
Data Persistence Test Run Number: 1						
Total Number of Logical Blocks Written	1,437,598					
Total Number of Logical Blocks Verified	1,157,214					
Total Number of Logical Blocks that Failed Verification	0					
Time Duration for Writing Test Logical Blocks	5 minutes					
Size in bytes of each Logical Block	1024					
Number of Failed I/O Requests in the process of the Test	0					

If approved by the SPC Auditor, the SPC-2 Persistence Test may be used to meet the SPC-1 persistence requirements. Both the SPC-1 and SPC-2 Persistence Tests provide the same level of functionality and verification of data integrity. The SPC-2 Persistence Test may be easily configured to address an SPC-1 storage configuration. The SPC-2 Persistence Test extends the size of storage configurations that may be tested and significantly reduces the test duration of such configurations.

The SPC-2 Persistence Test was approved for use in this set of audited measurements.

In some cases the same address was the target of multiple writes, which resulted in more Logical Blocks Written than Logical Blocks Verified. In the case of multiple writes to the same address, the pattern written and verified must be associated with the last write to that address.

PRICED STORAGE CONFIGURATION AVAILABILITY DATE

<u>Clause 9.4.3.9</u>

The committed delivery data for general availability (Availability Date) of all products that comprise the Priced Storage Configuration must be reported. When the Priced Storage Configuration includes products or components with different availability dates, the reported Availability Date for the Priced Storage Configuration must be the date at which all components are committed to be available.

The Fujitsu Storage Systems ETERNUS DX600 S3 as documented in this Full Disclosure Report is currently available for customer purchase and shipment.

PRICING INFORMATION

<u>Clause 9.4.3.3.6</u>

The Executive Summary shall contain a pricing spreadsheet as documented in Clause 8.3.1.

Pricing information may be found in the Priced Storage Configuration Pricing section on page 17.

TESTED STORAGE CONFIGURATION (TSC) AND PRICED STORAGE CONFIGURATION DIFFERENCES

Clause 9.4.3.3.8

The Executive Summary shall contain a list of all differences between the Tested Storage Configuration (TSC) and the Priced Storage Configuration.

A list of all differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration may be found in the Executive Summary portion of this document on page 17.

ANOMALIES OR IRREGULARITIES

<u>Clause 9.4.3.10</u>

The FDR shall include a clear and complete description of any anomalies or irregularities encountered in the course of executing the SPC-1 benchmark that may in any way call into question the accuracy, verifiability, or authenticity of information published in this FDR.

The SPC-1 Workload Generator was configured to use 60 Slave JVMs rather than the required 65 Slave JVMs. Based on prior testing, such a smaller number of Slave JVMs would have no impact on the reported SPC-1 IOPS performance and negligible to no impact on reported SPC-1 Average Response Times. If there was any impact on the reported SPC-1 Average Response Times, that impact would be slightly increased reported SPC-1 Average Response Times.

APPENDIX A: SPC-1 GLOSSARY

"Decimal" (powers of ten) Measurement Units

In the storage industry, the terms "kilo", "mega", "giga", "tera", "peta", and "exa" are commonly used prefixes for computing performance and capacity. For the purposes of the SPC workload definitions, all of the following terms are defined in "powers of ten" measurement units.

A kilobyte (KB) is equal to 1,000 (10³) bytes.

A megabyte (MB) is equal to 1,000,000 (10⁶) bytes.

A gigabyte (GB) is equal to 1,000,000,000 (10⁹) bytes.

A terabyte (TB) is equal to 1,000,000,000 (10¹²) bytes.

A petabyte (PB) is equal to 1,000,000,000,000,000 (10¹⁵) bytes

An exabyte (EB) is equal to 1,000,000,000,000,000 (10¹⁸) bytes

"Binary" (powers of two) Measurement Units

The sizes reported by many operating system components use "powers of two" measurement units rather than "power of ten" units. The following standardized definitions and terms are also valid and may be used in this document.

A kibibyte (KiB) is equal to 1,024 (2¹⁰) bytes.

A mebibyte (MiB) is equal to 1,048,576 (2²⁰) bytes.

A gigibyte (GiB) is equal to 1,073,741,824 (2³⁰) bytes.

A tebibyte (TiB) is equal to 1,099,511,627,776 (2⁴⁰) bytes.

A pebibyte (PiB) is equal to 1,125,899,906,842,624 (2⁵⁰) bytes.

An exbibyte (EiB) is equal to 1,152,921,504,606,846,967 (2⁶⁰) bytes.

SPC-1 Data Repository Definitions

Total ASU Capacity: The total storage capacity read and written in the course of executing the SPC-1 benchmark.

Application Storage Unit (ASU): The logical interface between the storage and SPC-1 Workload Generator. The three ASUs (Data, User, and Log) are typically implemented on one or more Logical Volume.

Logical Volume: The division of Addressable Storage Capacity into individually addressable logical units of storage used in the SPC-1 benchmark. Each Logical Volume is implemented as a single, contiguous address space.

Addressable Storage Capacity: The total storage (sum of Logical Volumes) that can be read and written by application programs such as the SPC-1 Workload Generator.

Configured Storage Capacity: This capacity includes the Addressable Storage Capacity and any other storage (parity disks, hot spares, etc.) necessary to implement the Addressable Storage Capacity.

Physical Storage Capacity: The formatted capacity of all storage devices physically present in the Tested Storage Configuration (TSC).

Data Protection Overhead: The storage capacity required to implement the selected level of data protection.

Required Storage: The amount of Configured Storage Capacity required to implement the Addressable Storage Configuration, excluding the storage required for the three ASUs.

Global Storage Overhead: The amount of Physical Storage Capacity that is required for storage subsystem use and unavailable for use by application programs.

Total Unused Storage: The amount of storage capacity available for use by application programs but not included in the Total ASU Capacity.

SPC-1 Data Protection Levels

Protected 1: The single point of failure of any *storage device* in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

Protected 2: The single point of failure of any *component* in the configuration will not result in permanent loss of access to or integrity of the SPC-1 Data Repository.

SPC-1 Test Execution Definitions

Average Response Time: The sum of the Response Times for all Measured I/O Requests divided by the total number of Measured I/O Requests.

Completed I/O Request: An I/O Request with a Start Time and a Completion Time (see "I/O Completion Types" below).

Completion Time: The time recorded by the Workload Generator when an I/O Request is satisfied by the TSC as signaled by System Software.

Data Rate: The data transferred in all Measured I/O Requests in an SPC-1 Test Run divided by the length of the Test Run in seconds.

Expected I/O Count: For any given I/O Stream and Test Phase, the product of 50 times the BSU level, the duration of the Test Phase in seconds, and the Intensity Multiplier for that I/O Stream.

Failed I/O Request: Any I/O Request issued by the Workload Generator that could not be completed or was signaled as failed by System Software. A Failed I/O Request has no Completion Time (see "I/O Completion Types" below).

I/O Request Throughput: The total number of Measured I/O requests in an SPC-1 Test Run divided by the duration of the Measurement Interval in seconds.

In-Flight I/O Request: An I/O Request issued by the I/O Command Generator to the TSC that has a recorded Start Time, but does not complete within the Measurement Interval (see "I/O Completion Types" below).

Measured I/O Request: A Completed I/O Request with a Completion Time occurring within the Measurement Interval (see "I/O Completion Types" below).

Measured Intensity Multiplier: The percentage of all Measured I/O Requests that were issued by a given I/O Stream.

Measurement Interval: The finite and contiguous time period, after the TSC has reached Steady State, when data is collected by a Test Sponsor to generate an SPC-1 test result or support an SPC-1 test result.

Ramp-Up: The time required for the Benchmark Configuration (BC) to produce Steady State throughput after the Workload Generator begins submitting I/O Requests to the TSC for execution.

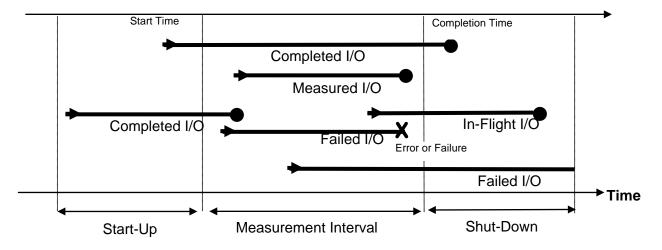
Ramp-Down: The time required for the BC to complete all I/O Requests issued by the Workload Generator. The Ramp-Down period begins when the Workload Generator ceases to issue new I/O Requests to the TSC.

Response Time: The Response Time of a Measured I/O Request is its Completion Time minus its Start Time.

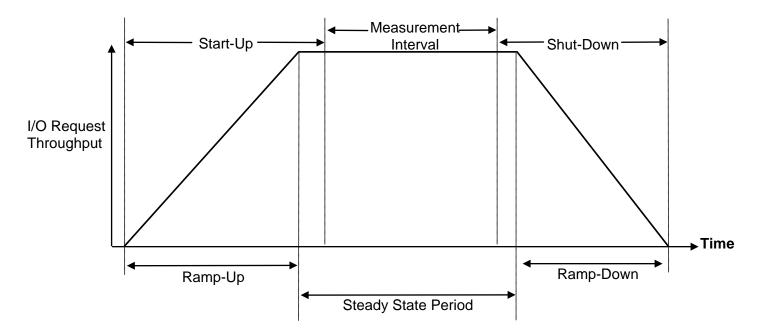
Start Time: The time recorded by the Workload Generator when an I/O Request is submitted, by the Workload Generator, to the System Software for execution on the Tested Storage Configuration (TSC).

Start-Up: The period that begins after the Workload Generator starts to submit I/O requests to the TSC and ends at the beginning of the Measurement Interval.

Shut-Down: The period between the end of the Measurement Interval and the time when all I/O Requests issued by the Workload Generator have completed or failed.


Steady State: The consistent and sustainable throughput of the TSC. During this period the load presented to the TSC by the Workload Generator is constant.

Test: A collection of Test Phases and or Test Runs sharing a common objective.


Test Run: The execution of SPC-1 for the purpose of producing or supporting an SPC-1 test result. SPC-1 Test Runs may have a finite and measured Ramp-Up period, Start-Up period, Shut-Down period, and Ramp-Down period as illustrated in the "SPC-1 Test Run Components" below. All SPC-1 Test Runs shall have a Steady State period and a Measurement Interval.

Test Phase: A collection of one or more SPC-1 Test Runs sharing a common objective and intended to be run in a specific sequence.

I/O Completion Types

SPC-1 Test Run Components

SPC BENCHMARK 1™ V1.14 FULL DI Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

FULL DISCLOSURE REPORT

APPENDIX B: CUSTOMER TUNABLE PARAMETERS AND OPTIONS

QLogic HBA Driver

The following parameter was set in the QLogic HBA driver configuration file, **qla2xxx.conf**, to set the maximum queue depth to 128 from the default of 32:

options qla2xxx ql2xmaxqdepth=128

The file was copied to the **/etc/modprobe.d/** directory in each of the Host Systems and each system was rebooted to set the queue depth in all of the installed HBAs.

APPENDIX C: TESTED STORAGE CONFIGURATION (TSC) CREATION

The standard Fujitsu Command Line tool (CLI) was used to create the ETERNUS DX600 S3 SPC-1 configuration.

The 'master' script, <u>doFDRcfg.sh</u>, was executed, which in turn, invoked the script, <u>DX600S3 20140423.exp</u>. The 'master' script included shell commands to monitor the progress as the physical formatting proceeded, which used the <u>expect</u> script <u>showFormatStatus.exp</u> to pick up the status information from the array.

The **DX600S3_20140423.exp** script completed steps 1-4, described below for the 16 host port configuration.

Each <u>expect</u> script included the **docli** procedure, which was used to issue the CLI commands to the array. That procedure used <u>ssh</u> for communication with the array. A second procedure in the script, **doexit**, was used to conclude the execution sequence at the end of the script.

Step 1 – Creation of RAID Groups

A total of 22 RAID Groups were created, according to the configuration plan, **SystemConfig_DX600s3-SPC-1_22RGs_20131029.xlsx**, which is typically prepared in concert with a Fujitsu SE. Each RAID Group was made up of 2 disk drives in a RAID1(1+1) configuration and assigned to a specific CM for operational control. The RAID Groups were named RG00 through RG15 (hexadecimal).

Step 2 – Creation of the Logical Volumes

Wide striped logical volumes were created across 2 sets of RAID Groups (each with 11 RAID Groups). Three volumes were created on each of the RAID Groups, one for each of the three ASUs, for a total of 6 logical volumes. The sizes of two volumes created on the 2 sets for ASU-1 and ASU-2 were set to 1,223,189 MiB (1,282,606.629 MB) each. The size of the volume on the 2 sets for ASU-3 were set to 271,843 MiB (285,048.046 MB) each.

Step 3 – Creation of the Global Hot Spares

One drive was designated as the Global Hot Spare in slot 11 of the DE-00, per the configuration plan.

Step 4 – Assignment of LUN Mapping to the Linux Host Systems

The **DX600S3 20140423.exp** script provided mapping to 16 host ports.

The port LUN mapping was assigned for each of the Logical Volumes using two ports on each of the four Channel Adapters (CA) in each of the two Controller Modules (CM). Each of the volumes, which were defined on RAID Groups owned by CM-0, were assigned LUN numbers on the active ports on the four CAs installed on CM-0. Each of the volumes, which were defined on RAID Groups owned by CM-1, were assigned LUN numbers on the active ports on the four CAs.

Fujitsu Storage Systems ETERNUS DX600 S3

Referenced Scripts

doFDRcfg.sh

```
#!/bin/bash
 #
 # Do the configuration steps required for the SPC1 benchmark
 #
 # create tmp directory for spc1 if it does not exist
 if [ ! -d /tmp/spc1 ]; then
 mkdir /tmp/spc1
 fi
 ROOT=/home/spc1/fdr/fdrwork
 SCRIPTS=${ROOT}/7_Execution
 CONFIGURE=${ROOT}/5_Creation
 PollingInterval=1200
                                 # wait 20 minutes to check format status
 # confID uniquely identifies the configuration of the array
 #
 confID=DX600S3 20140423
 #
 # obtain cjobID based on the timestamp
 # cjobID uniquely identifies the configuration job
 cjobID=C`date +%y%m%d%H%M%S`
 echo job start time `date` | tee -a /tmp/spc1/${cjobID}_message.txt
 echo This is an array configuration job | tee -a /tmp/spc1/${cjobID}_message.txt
 echo job confID=$confID | tee -a /tmp/spc1/${cjobID}_message.txt
 echo job cjobID=$cjobID | tee -a /tmp/spc1/${cjobID}_message.txt
 echo "Starting Configuration Job=${cjobID}" | tee -a ${cjobID}_message.txt
 # Configure Array using the Expect script to issue CLI commands
 #
 echo "Starting Eternus CLI script for configuration Job=${cjobID}" | tee -a
 ${cjobID}_message.txt
 ${CONFIGURE}/${confID}.exp
 echo "Completed Eternus CLI script for configuration Job=${cjobID}" | tee -a
 ${cjobID}_message.txt
 #
 # Wait for physical format to complete
 #
 echo "Waiting for physical format to complete Job=${cjobID}" | tee -a
 ${cjobID}_message.txt
 ${CONFIGURE}/showFormatStatus.exp dx600s3 root /tmp/spc1/fmt_${cjobID}.txt
 LUNS=`grep Available /tmp/spc1/fmt_${cjobID}.txt|wc|awk '{print $1}'`
 while [ $LUNS -qt 0 ]; do
  echo "-----
                               -----" >>
 /tmp/spc1/${cjobID}_message.txt
  cat /tmp/spc1/fmt_${cjobID}.txt >> /tmp/spc1/${cjobID}_message.txt
  echo "Currently formatting $LUNS LUNS Job=${cjobID}" ${cjobID}_message.txt
  sleep $PollingInterval
  ${CONFIGURE}/showFormatStatus.exp dx600s3 root /tmp/spc1/fmt_${cjobID}.txt
  LUNS=`grep Available /tmp/spc1/fmt_${cjobID}.txt |wc |awk '{print $1}'
 done
 echo "Physical format complete please proceed. Job=${cjobID}" | tee -a
 ${cjobID}_message.txt
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                                                Submission Identifier: A00146
                              FULL DISCLOSURE REPORT
                                                          Submitted for Review: JULY 25, 2014
Fujitsu Limited
```

DX600S3_20140423.exp

```
#!/usr/bin/expect
# script to setup initial configuration for dx600s3
# for SPC-1 benchmark
# Requirment: ssh public key for this server registered to the array
set timeout 600
set user root
spawn ssh dx600s3 -l $user
expect "root@dx600s3's password: "
send "rootr"
set timeout 200
expect "CLI>"
# procedure to execute dx600s3 cli command
proc docli { cmd args} {
send "$cmd $args\r"
expect "CLI>"
ł
# procedure to exit
proc doexit {} {
send "exit\r"
#DX600S3 Configuration
## Create RAID ##
docli create raid-group -name RG00 -disks 0000,1000 -level 1 -assigned-cm 0
docli create raid-group -name RG01 -disks 0001,1001 -level 1 -assigned-cm 1
docli create raid-group -name RG02 -disks 0002,1002 -level 1 -assigned-cm 0
docli create raid-group -name RG03 -disks 0003,1003 -level 1 -assigned-cm 1
docli create raid-group -name RG04 -disks 2000,3000 -level 1 -assigned-cm 0
docli create raid-group -name RG05 -disks 2001,3001 -level 1 -assigned-cm 1
docli create raid-group -name RG06 -disks 2002,3002 -level 1 -assigned-cm 0
docli create raid-group -name RG07 -disks 2003,3003 -level 1 -assigned-cm 1
docli create raid-group -name RG08 -disks 0004,1004 -level 1 -assigned-cm 0
docli create raid-group -name RG09 -disks 0005,1005 -level 1 -assigned-cm 1
docli create raid-group -name RG0a -disks 0006,1006 -level 1 -assigned-cm 0
docli create raid-group -name RGOb -disks 0007,1007 -level 1 -assigned-cm 1
docli create raid-group -name RGOc -disks 2004,3004 -level 1 -assigned-cm 0
docli create raid-group -name RG0d -disks 2005,3005 -level 1 -assigned-cm 1
docli create raid-group -name RG0e -disks 2006,3006 -level 1 -assigned-cm 0
docli create raid-group -name RGOf -disks 2007,3007 -level 1 -assigned-cm 1
docli create raid-group -name RG10 -disks 0008,1008 -level 1 -assigned-cm 0
docli create raid-group -name RG11 -disks 0009,1009 -level 1 -assigned-cm 1
docli create raid-group -name RG12 -disks 2008,3008 -level 1 -assigned-cm 0
docli create raid-group -name RG13 -disks 2009,3009 -level 1 -assigned-cm 1
docli create raid-group -name RG14 -disks 0010,1010 -level 1 -assigned-cm 0
docli create raid-group -name RG15 -disks 2010,3010 -level 1 -assigned-cm 1
## Create Volume ##
docli create volume -name ASU1-1 -count 1 -rg-name
RG00,RG02,RG04,RG06,RG08,RG0a,RG0c,RG0e,RG10,RG12,RG14 -type wsv -size 1223189mb
docli create volume -name ASU3-1 -count 1 -rg-name
RG00,RG02,RG04,RG06,RG08,RG0a,RG0c,RG0e,RG10,RG12,RG14 -type wsv -size 271843mb
docli create volume -name ASU2-1 -count 1 -rg-name
RG00,RG02,RG04,RG06,RG08,RG0a,RG0c,RG0e,RG10,RG12,RG14 -type wsv -size 1223189mb
docli create volume -name ASU1-2 -count 1 -rg-name
RG01,RG03,RG05,RG07,RG09,RG0b,RG0d,RG0f,RG11,RG13,RG15 -type wsv -size 1223189mb
docli create volume -name ASU3-2 -count 1 -rg-name
RG01,RG03,RG05,RG07,RG09,RG0b,RG0d,RG0f,RG11,RG13,RG15 -type wsv -size 271843mb
docli create volume -name ASU2-2 -count 1 -rg-name
RG01,RG03,RG05,RG07,RG09,RG0b,RG0d,RG0f,RG11,RG13,RG15 -type wsv -size 1223189mb
```

SPC BENCHMARK 1™ V1.14FULL DISCLOSURE REPORTFujitsu LimitedFujitsu Storage Systems ETERNUS DX600 S3

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

APPENDIX C: TESTED STORAGE CONFIGURATION (TSC) CREATION

```
## Set Global Hot Spare ##
docli set global-spare -disks 0011
```

## Set	LUI	N Mapping	g ##					
docli	set	mapping	-port	000	-volume-number	0	-lun	1
docli	set	mapping	-port	001	-volume-number	1	-lun	3
docli	set	mapping	-port	100	-volume-number	3	-lun	2
docli	set	mapping	-port	101	-volume-number	4	-lun	4
docli	set	mapping	-port	000	-volume-number	2	-lun	5
docli	set	mapping	-port	101	-volume-number	5	-lun	6
docli	set	mapping	-port	010	-volume-number	0	-lun	1
docli	set	mapping	-port	011	-volume-number	1	-lun	3
docli		J	-		-volume-number			
docli	set	mapping	-port	111	-volume-number	4	-lun	4
docli	set	mapping	-port	010	-volume-number	2	-lun	5
docli		mapping	-		-volume-number	5	-lun	6
docli	set	mapping	-port	020	-volume-number	0	-lun	1
docli	set	mapping	-port	021	-volume-number	1	-lun	3
docli	set	mapping	-port	120	-volume-number	3	-lun	2
docli	set	mapping	-port	121	-volume-number	4	-lun	4
docli	set	mapping	-port	020	-volume-number	2	-lun	5
docli	set	mapping	-port	121	-volume-number	5	-lun	6
docli	set	mapping	-port	030	-volume-number	0	-lun	1
docli	set	mapping	-port	031	-volume-number	1	-lun	3
docli	set	mapping	-port	130	-volume-number	3	-lun	2
docli	set	mapping	-port	131	-volume-number	4	-lun	4
docli	set	mapping	-port	030	-volume-number	2	-lun	5
docli	set	mapping	-port	131	-volume-number	5	-lun	6

Logout ## doexit

showFormatStatus.exp

```
#!/usr/bin/expect -f
# Create volumes from the array
# getFormatStatus <array> <arrayid> <file>
# assumption: array's ssh port has ssh-key-pre-registered no no password is required
# please register ssh-keys
# procedure to execute commands
proc docli {cmd args} {
send "$cmd $args\r"
expect "CLI>"
}
# procedure to exit
proc doexit {} {
send "exit \r"
}
set array [lindex $argv 0]
set arrayid [lindex $argv 1]
set file [lindex $argv 2]
#set file /tmp/formatstatus.txt
# login
spawn ssh $arrayid@$array
expect "root@dx600s3's password: "
send "root\r"
set timeout 40
expect "CLI>"
if [catch {open $file "w" } output] {
 puts "$output"
 exit
}
```

Page 72 of 86

APPENDIX C: TESTED STORAGE CONFIGURATION (TSC) CREATION

```
send "show volume-progress\r"
expect "CLI>"
puts $output "Output = $expect_out(buffer)"
close $output
doexit
close
```

APPENDIX D: SPC-1 WORKLOAD GENERATOR STORAGE COMMANDS AND PARAMETERS

ASU Pre-Fill

The content of command and parameter file, used in this benchmark to execute the required ASU pre-fill, is listed below.

```
* Prefill vdbench parameter file for SPC1 DX600S3 2014/04/23
* This will produce a random data pattern of the entire LBA range using LSFR
* 32 bit
compratio=1
* openflags=directio is specified for linux since vdbench requires this when /dev
is used
* size parameter is also specified because linux version of vdbench requires it
sd=asu1_1,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300030000,size=1194g,threads=32,openflags=directio
sd=asu3_1,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300010000, size=265g, threads=32, openflags=directio
sd=asu2 1,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300020000, size=1194g, threads=32, openflags=directio
sd=asu1_2,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300000000, size=1194g, threads=32, openflags=directio
sd=asu3_2,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300040000, size=265g, threads=32, openflags=directio
sd=asu2_2,lun=/dev/disk/by-id/scsi-
3600000e00d2a0000002a002300050000, size=1194g, threads=32, openflags=directio
wd=wd1,sd=asu1_1,rdpct=0,seek=-1,xfersize=128K
wd=wd2,sd=asu3_1,rdpct=0,seek=-1,xfersize=128K
wd=wd3,sd=asu2_1,rdpct=0,seek=-1,xfersize=128K
wd=wd4,sd=asu1_2,rdpct=0,seek=-1,xfersize=128K
wd=wd5,sd=asu3_2,rdpct=0,seek=-1,xfersize=128K
wd=wd6,sd=asu2_2,rdpct=0,seek=-1,xfersize=128K
*_____
* Use 10 hours as a maximum elapsed time,
* which should ensure the entire LBA range
* will be written before the time elapses
*_____
rd=asu_prefill,wd=wd*,iorate=max,elapsed=36000,interval=10
* The above "elapsed=36000" may have to be increased to ensure that the utility will
reach
* the end of the LUN ("seek=-1") prior to the end of the specified elapsed time
```

Primary Metrics and Repeatability Tests

The content of SPC-1 Workload Generator command and parameter file used in this benchmark to execute the Primary Metrics (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase) and Repeatability (Repeatability Test Phase 1 and Repeatability Test Phase 2) Tests is listed below.

```
host=master
```

```
slaves=(slave1,slave2,slave3,slave4,slave5,slave6,slave7,slave8,slave9,slave10,slave
11,slave12,slave13,slave14,slave15,slave16,slave17,slave18,slave19,slave20,slave21,s
lave22,slave23,slave24,slave25,slave26,slave27,slave28,slave29,slave30,slave31,slave
32,slave33,slave34,slave35,slave36,slave37,slave38,slave39,slave40,slave41,slave42,s
lave43,slave44,slave45,slave46,slave47,slave48,slave49,slave50,slave51,slave52,slave
53,slave54,slave55,slave56,slave57,slave58,slave59,slave60)
javaparms="-Xmx3072m -Xms3072m -Xss512k"
sd=asu1_1,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a002300030000,size=1194g
sd=asu2_1,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a00230002000,size=1194g
sd=asu1_2,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a002300000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a0023000000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a0023000000,size=265g
sd=asu2_2,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a0023000000,size=1194g
```

SPC-1 Persistence Test Run 1 (write phase)

The content of SPC-1 Workload Generator command and parameter file used in this benchmark to execute a reduced level SPC-1 Persistence Test Run 1 (*write phase*) is listed below.

```
javaparms="-Xmx3072m -Xms3072m -Xss512k"
sd=asu1_1,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a002300030000,size=1194g
sd=asu3_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300010000,size=265g
sd=asu2_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300020000,size=1194g
sd=asu1_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a00230000000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
sd=asu2_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
```

SPC-2 Persistence Test

If approved by the SPC Auditor, the SPC-2 Persistence Test may be used to meet the SPC-1 persistence requirements. Both the SPC-1 and SPC-2 Persistence Tests provide the same level of functionality and verification of data integrity.

Common Command Lines – SPC-2 Persistence Test

The following command lines appear at the beginning of each command and parameter file for the two SPC-2 Persistence Test Runs. The command lines are only listed below to eliminate redundancy

```
host=localhost,jvms=2,java=("java","-Xmx3072m -Xms3072m -Xss512k")
```

```
sd=asu1_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300030000,size=1194g
sd=asu3_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300010000,size=265g
sd=asu2_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300020000,size=1194g
sd=asu1_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300000000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
sd=asu2_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
```

```
maxlatestart=1
reportinginterval=5
segmentlength=512m
```

SPC-2 Persistence Test Run 1 (write phase)

* Persistence Test - Write Phase

common commands

rd=default,rampup=180,periods=90,measurement=300,runout=0,rampdown=0
rd=default,buffers=1,rdpct=0,xfersize=1024k

rd=TR1_SPC-2-persist-w,streams=214

SPC-2 Persistence Test Run 2 (read phase)

* Persistence Test - Read Phase

common commands

maxpersistenceerrors=10

rd=default,buffers=1,rdpct=100,xfersize=1024k

rd=TR1_SPC-2-persist-r

Slave JVMs

Each Slave JVM was invoked with a command and parameter file similar to the example listed below. The only difference in each file was **host** parameter value, which was unique to each Slave JVM, e.g. **slave1...slave60**.

```
master=masterh
host=slavel
javaparms="-Xmx3072m -Xms3072m -Xss512k"
sd=asu1_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300030000,size=1194g
sd=asu3_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300010000,size=265g
sd=asu2_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300020000,size=1194g
sd=asu1_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a00230000000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
sd=asu2_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300050000,size=1194g
```

APPENDIX E: SPC-1 WORKLOAD GENERATOR INPUT PARAMETERS

'Master' Execution Script

The 'master' script, **doFDRall_1H.sh**, was used to execute the required ASU pre-fill, Primary Metrics Test (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase), Repeatability Test (Repeatability Test Phase 1 and Repeatability Test Phase 2), a reduced level SPC-1 Persistence Test Run 1 and SPC-2 Persistence Test Run 1 in an uninterrupted sequence.

After the above test sequence completed, the required TSC power off/power was performed. That step was followed by execution of the <u>doFDRall 2H.sh</u> script, which was used to perform SPC-2 Persistence Test Run 2.

The **doFDRall_1H.sh** and <u>**doFDRall_2H.sh**</u> scripts invoked various other scripts which appear below in the <u>**Referenced Scripts and Files**</u> section with a brief description of each referenced script.

doFDRall_1H.sh

```
#!/bin/bash -x
 # Script consists of Part 1 of the FDR job
 #
   - Prefill
   - Save "Before FDR" logs
 #
 #
   - Metricss
 #
    - Repeatability1/2
 #
    - Persistencel
 #
    - SPC2 Pers-Write
 #
 #
 #
 # Configure Variable
 #
 if [ $# -ne 2 ]
 then
      BSU=6405
      BSUPERSIST=1400
 else
      BSU=$1
      BSUPERSIST=$2
 fi
 ROOT=/home/spc1/fdr/fdrwork;export ROOT
                                                        # Absolute path of Work
 Directories
 PREFILL=${ROOT}/prefill;export PREFILL
                                                 # directory for prefill step
 SCRIPTS=${ROOT}/7_Execution; export SCRIPTS
                                                 # main script directory
 NSLAVES=60; export NSLAVES
                                                 # Total Number of Slave
 METRICSRUNTIME=28800
                                                 # Metrics running time (sec)
 SLAVEHOST2=h2
 SLAVEHOST3=h3
 SLAVEHOST4=h4
 # benchmark commands
 JAVA=java;export JAVA
 VDBENCH=/home/spc1/vdbench/vdbench;export VDBENCH
 EXPORTLOG=exportLog.exp;export EXPORTLOG
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                                                   Submission Identifier: A00146
                               FULL DISCLOSURE REPORT
                                                             Submitted for Review: JULY 25, 2014
Fujitsu Limited
Fujitsu Storage Systems ETERNUS DX600 S3
```

Fujitsu Storage Systems ETERNUS DX600 S3

```
JAVAPARMS="-Xmx3072m -Xms3072m -Xss512k";export JAVAPARMS # Java Parameter
 BMTPATH=/usr/local/share3/StoragePerformance/SPC1_Benchmark/DX600S3/;export BMTPATH
       # Repository Info
 BMTHOST=fjuser@129.212.198.24;export BMTHOST
 # create tmp directory for spc1 if it does not exist
 SPCTMP=/tmp/spc1;export SPCTMP
 if [ ! -d ${SPCTMP} ]; then
      mkdir ${SPCTMP}
 fi
 #
 # Create confID
 #
 confID=DX600S3_20140423;export confID
 # obtain jobID based on the timestamp
 # jobID uniquely identifies the benchmark run
 jobID=JH`date +%y%m%d%H%M%S`;export jobID
 WORKDIR=${ROOT}/${jobID};export WORKDIR
                                                        # WORK Directory
 #
 # save Variables Part 2 use
 #
 echo $confID > ${SPCTMP}/lastconfID
 echo $jobID > ${SPCTMP}/lastjobID
 echo $BMTPATH > ${SPCTMP}/BMTPATH
 echo $BMTHOST > ${SPCTMP}/BMTHOST
 echo $WORKDIR > ${SPCTMP}/WORKDIR
 echo $JAVAPARMS > ${SPCTMP}/JAVAPARMS
 echo $NSLAVES > ${SPCTMP}/NSLAVES
 echo $EXPORTLOG > ${SPCTMP}/EXPORTLOG
 echo $VDBENCH > ${SPCTMP}/VDBENCH
 echo $JAVA > ${SPCTMP}/JAVA
 echo $ROOT > ${SPCTMP}/ROOT
 echo $SCRIPTS > ${SPCTMP}/SCRIPTS
 echo $PREFILL > ${SPCTMP}/PREFILL
 echo $BMTPATH > ${SPCTMP}/BMTPATH
 echo $BMTHOST > ${SPCTMP}/BMTHOST
 #
 # setup the unique execution context(directory) for SPC1 job
 #
 # For Master host
 cd ${ROOT}
 mkdir ${jobID}
 cd ${jobID}
 # also for the Slave host
 ssh -T slave${SLAVEHOST2} << HERE</pre>
 cd ${ROOT}
 mkdir ${ROOT}/${jobID}
 HERE
 ssh -T slave${SLAVEHOST3} << HERE</pre>
 cd ${ROOT}
 mkdir ${ROOT}/${jobID}
 HERE
 ssh -T slave${SLAVEHOST4} << HERE</pre>
 cd ${ROOT}
 mkdir ${ROOT}/${jobID}
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                                                  Submission Identifier: A00146
                               FULL DISCLOSURE REPORT
                                                            Submitted for Review: JULY 25, 2014
Fujitsu Limited
```

Fujitsu Storage Systems ETERNUS DX600 S3

HERE

```
echo -e DX600S3 "\n" start time `date` "\n" | tee -a ${SPCTMP}/${jobID}_message.txt
 echo -e confID=$confID "\n" | tee -a ${SPCTMP}/${jobID}_message.txt
 echo -e jobID=$jobID "\n" | tee -a ${SPCTMP}/${jobID}_message.txt
 echo "Starting DX600S3 FDR Job=${jobID}" | tee -a ${SPCTMP}/${jobID}_message.txt
 #
 # Start Sequence of SPC1 benchmark jobs
 #
 #
 # Setup the Java environment variables for SPC1
 #
 CLASSPATH=/usr/local/spc/spc1;export CLASSPATH
 LD_LIBRARY_PATH=/usr/local/spc/spc1;export LD_LIBRARY_PATH
 #
 # setup for Prefill task by copying the prefill parameters file
 #
 echo "Starting DX600S3 Prefill test for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 mkdir Prefill
 cd Prefill
 cp ${SCRIPTS}/${confID}_prefill.txt .
 ${VDBENCH} -f ${confID}_prefill.txt
 cd . .
 #
 # Report Prefill Complete
 #
 echo "Completed DX600S3 Prefill test for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 #
 # Collect Logs after the prefill job
 #
 echo "Starting DX600S3 BeforeF log save Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 ${SCRIPTS}/${EXPORTLOG} ${jobID}_BeforeF
 cp /tmp/*${jobID}_BeforeF* .
 echo "Completed DX600S3 BeforeF log save Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 # Setup headers for highlevel parameter files and the slave files
 #
 ${SCRIPTS}/Setup2FDRH.sh ${BSU}
 echo "Starting DX600S3 Metrics test step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 #
 # Start Metrics
 #
 cp ${SCRIPTS}/spc1.cfg .
 ${SCRIPTS}/setup_slave_dirsH.sh ${jobID} metrics
 ${SCRIPTS}/start_slavesH.sh metrics
 ${JAVA} $JAVAPARMS metrics -b ${BSU} -t ${METRICSRUNTIME}
 ${SCRIPTS}/stop_slaves.sh
 echo "Completed DX600S3 Metrics test step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                                                 Submission Identifier: A00146
                              FULL DISCLOSURE REPORT
Fujitsu Limited
                                                           Submitted for Review: JULY 25, 2014
```

Fujitsu Storage Systems ETERNUS DX600 S3

#

```
Page 80 of 86
```

```
#Start Repeat-1
 #
 echo "Starting DX600S3 Repeatablity test 1 step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 ${SCRIPTS}/setup_slave_dirsH.sh ${jobID} repeatability1
 ${SCRIPTS}/start_slavesH.sh repeatability1
 ${JAVA} $JAVAPARMS repeat1 -b ${BSU}
 ${SCRIPTS}/stop_slaves.sh
 echo "Completed DX600S3 Repeatablity test 1 step for Job=${jobID} at `date`" | tee -
 a ${SPCTMP}/${jobID}_message.txt
 #
 # Start Repeat-2
 #
 echo "Starting DX600S3 Repeatablity test 2 step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 ${SCRIPTS}/setup_slave_dirsH.sh ${jobID} repeatability2
 ${SCRIPTS}/start_slavesH.sh repeatability2
 ${JAVA} $JAVAPARMS repeat2 -b ${BSU}
 ${SCRIPTS}/stop_slaves.sh
 echo "Completed DX600S3 Repeatablity test 2 step for Job=${jobID} at `date`" | tee -
 a ${SPCTMP}/${jobID}_message.txt
 #
 # Change Multihost spc1.cfg to Singlehost one
 #
 mv spcl.cfg multispcl.cfg
 cp ${SCRIPTS}/persspc1.cfg spc1.cfg
 # Start Persist-1 reduced BSU value $BSUPERSIST
 #
 echo "Starting DX600S3 Persistence test 1 step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 ${JAVA} $JAVAPARMS persist1 -b $BSUPERSIST
 echo "Completed DX600S3 Persistence test 1 step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 #
 # Setup the Java environment variables for SPC2
 #
 SPC2=/usr/local/spc/spc2
 CLASSPATH=${SPC2};export CLASSPATH
 LD_LIBRARY_PATH=${SPC2};export LD_LIBRARY_PATH
 #
 # Start sequence of benchmark jobs
 #
 #copy the parameter files to work directory
 cp ${SCRIPTS}/parm_FDR*.txt .
 #
 #Pers-Write job
 echo "Starting DX600S3 SPC2 Pers-W step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
 ${JAVA} $JAVAPARMS vdbench -w SPC2 -f parm_FDR_pers_write.txt -o out_Pers-Write -
 init
 ${JAVA} $JAVAPARMS vdbench -w SPC2 -f parm_FDR_pers_write.txt -o out_Pers-Write
 echo "Completed DX600S3 SPC2 Pers-W step for Job=${jobID} at `date`" | tee -a
 ${SPCTMP}/${jobID}_message.txt
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                                                 Submission Identifier: A00146
                              FULL DISCLOSURE REPORT
Fujitsu Limited
                                                           Submitted for Review: JULY 25, 2014
```

```
#
# Perform Power cycle
#
echo "Array is Ready for manual Power cycle Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
```

SPC-1 Persistence Test Run 2

The following script is executed to invoke the SPC-2 Persistence Test Run 2 (*read phase*) after completion of the required TSC power off/power on cycle.

doFDRall_2H.sh

```
#!/bin/bash -x
 #
 # Do 2nd steps required for the FDR run
 #
 # obtain jobID and confID saved from part 1
 #
 # check to see if previous context exists
 # create tmp directory for spc1 if it does not exist
 SPCTMP=/tmp/spc1
 if [ ! -d ${SPCTMP} ]; then
      echo Error!
      exit
 else
      confID=`cat ${SPCTMP}/lastconfID`
       jobID=`cat ${SPCTMP}/lastjobID`
      BMTPATH=`cat ${SPCTMP}/BMTPATH`
      BMTHOST=`cat ${SPCTMP}/BMTHOST`
      WORKDIR=`cat ${SPCTMP}/WORKDIR`
      JAVAPARMS=`cat ${SPCTMP}/JAVAPARMS`
      NSLAVES=`cat ${SPCTMP}/NSLAVES`
      EXPORTLOG=`cat ${SPCTMP}/EXPORTLOG`
      VDBENCH=`cat ${SPCTMP}/VDBENCH`
      JAVA=`cat ${SPCTMP}/JAVA`
      ROOT=`cat ${SPCTMP}/ROOT`
      SCRIPTS=`cat ${SPCTMP}/SCRIPTS`
      PREFILL=`cat ${SPCTMP}/PREFILL`
 fi
 export SPCTMP
 export confID
 export jobID
 export BMTPATH
 export BMTHOST
 export WORKDIR
 export JAVAPARMS
 export NSLAVES
 export EXPORTLOG
 export VDBENCH
 export JAVA
 export ROOT
 export SCRIPTS
 export PREFILL
 cd ${ROOT}/${jobID}
 #
SPC BENCHMARK 1<sup>TM</sup> V1.14
                               FULL DISCLOSURE REPORT
```

Page 82 of 86

APPENDIX E: SPC-1 Workload Generator Input Parameters

```
# Run SPC2 pers-read
#
cd ${WORKDIR}
CLASSPATH=/usr/local/spc/spc2;export CLASSPATH
LD_LIBRARY_PATH=/usr/local/spc/spc2;export LD_LIBRARY_PATH
echo "Starting DX600S3 SPC2 Pers-R step for Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
#SPC2 pers-r
${JAVA} $JAVAPARMS vdbench -w SPC2 -f parm_FDR_pers_read.txt -o out_Pers-Read
echo "Completed DX600S3 SPC2 Pers-R step for Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
#
# Save after log
#
echo "Starting DX600S3 AfterJ log save Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
${SCRIPTS}/exportLog.exp ${jobID}_AfterJ
cp /tmp/*${jobID}_AfterJ* .
echo "Completed DX600S3 AfterJ log save Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
cp ${SCRIPTS}/nohup.out nohup_${jobID}.out
echo "current time = `date`."
echo "Completed DX600S3 FDR job All steps for Job=${jobID} at `date`" | tee -a
${SPCTMP}/${jobID}_message.txt
echo "Run /home/spc1/fdr/zipup.sh, Collect All FDR data and send it in ${BMTHOST} at
`date`" | tee -a ${SPCTMP}/${jobID}_message.txt
```

Referenced Scripts and Files

Setup2FDRH.sh

Invoked from <u>doFDRall_1H.sh</u>. This script will create the following files using the manually created file, <u>spc1-device.cfg</u>, as input:

- <u>slave_header.txt</u>: The header text for each of the Slave JVM configuration files.
- <u>spc1_master_header.txt</u>: The header text for the SPC-1 Workload Generator command and paramenter file (spc1.cfg).
- **spc1.cfg**: The SPC-1 Workload Generator command and parametter file used for the Primary Metrics and Repeatability Tests.
- **persspec1.cfg**: The SPC-1 Workload Generator command and parametter file used for the reduced level SPC-1 Persistence Test Run 1.

```
#!/bin/bash
#
# Setup2FDRH.sh <BSU>
# Setup the parameter files for FDR run
# Called by doFDRall_1H.sh
# Parameter BSU - BSU used for FDR run
# Input files (generated manually)
# spc1-device.cfg
#
# 0utput files:
```

SPC BENCHMARK 1^{TM} V1.14 Full Disclosure Report

```
slave_header.txt
#
     spc1_master_header.txt
#
#
     spcl.cfg
#
     persspcl.cfg
#
# Enviroment Variables
# SCRIPTS
# JAVAPARMS
# NSLAVES
#
if [ $# != 1 ]
 then
   echo "$0 <Bsu>"
   exit
fi
MASTERIP=masterh
BSU=$1
SCRIPTS=/home/spc1/fdr/fdrwork/7_Execution
cd $SCRIPTS
#Create header for slave configuration file
cat >slave_header.txt <<HERE</pre>
master=$MASTERIP
host=#slave1#
javaparms="$JAVAPARMS"
HERE
SLAVELIST=""
#Create header for master configuration file
for (( i=1; i<=NSLAVES; i++ ))</pre>
do
SLAVELIST=${SLAVELIST}slave${i}
if [ $i != $NSLAVES ]
 then
   SLAVELIST="${SLAVELIST},"
fi
done
cat > spc1_master_header.txt <<HERE</pre>
host=master
slaves=($SLAVELIST)
javaparms="$JAVAPARMS"
HERE
cat spc1_master_header.txt spc1-device.cfg > spc1.cfg
cat - spc1-device.cfg > persspc1.cfg <<HERE</pre>
javaparms="$JAVAPARMS"
HERE
```

spc1-device.cfg

Created manually and used by <u>Setup2FDRH.sh</u> and <u>setup_slave_dirsH.sh</u> to create various configuration files.

```
sd=asu1_1,lun=/dev/disk/by-id/scsi-3600000e00d2a000002a002300030000,size=1194g
sd=asu3_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300010000,size=265g
sd=asu2_1,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300020000,size=1194g
sd=asu1_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a00230000000,size=1194g
sd=asu3_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300040000,size=265g
sd=asu2_2,lun=/dev/disk/by-id/scsi-3600000e00d2a0000002a002300050000,size=1194g
```

spc1_master_header.txt

Created by <u>Setup2FDRH.sh</u>.

host=master

SPC BENCHMARK 1TM V1.14 Full Disclosure Report

Submission Identifier: A00146 Submitted for Review: JULY 25, 2014

Fujitsu Limited Fujitsu Storage Systems ETERNUS DX600 S3

```
slaves=(slave1,slave2,slave3,slave4,slave5,slave6,slave7,slave8,slave9,slave10,slave
11,slave12,slave13,slave14,slave15,slave16,slave17,slave18,slave19,slave20,slave21,s
lave22,slave23,slave24,slave25,slave26,slave27,slave28,slave29,slave30,slave31,slave
32,slave33,slave34,slave35,slave36,slave37,slave38,slave39,slave40,slave41,slave42,s
lave43,slave44,slave45,slave46,slave47,slave48,slave49,slave50,slave51,slave52,slave
53,slave54,slave55,slave56,slave57,slave58,slave59,slave60)
javaparms="-Xmx3072m -Xms3072m -Xms3072m -Xms3072m">-Xms3072m -Xms3072m
```

setup_slave_dirsH.sh

Invoked from <u>doFDRall_1H.sh</u>. This script uses <u>slave_header.txt</u>, which was created by <u>Setup2FDRH.sh</u>, and <u>spc1-device.cfg</u> as input to create each Slave JVM configuration file and a directory for each Slave JVM's execution output.

```
#!/bin/bash
# setup_slave_dirsH <jobID> <STEP>
# Create the work directory and slave sub directory for each steep
# environment
     ${ROOT}
#
#
     ${WORKDIR}
#
     ${SCRIPTS}
#
     ${NSLAVES}
# parameter jobID STEP
jobID=$1
STEP=$2
cd ${WORKDIR}
mkdir ${STEP}
cd ${STEP}
# create separate directory and slave cfg files under each slave<n>/slave<n>.txt
for (( i=1; i<=NSLAVES ; i++ ))</pre>
do
mkdir slave${i}
 cat ${SCRIPTS}/slave_header.txt ${SCRIPTS}/spc1-device.cfg |sed
s/#slave1#/slave${i}/ > slave${i}/slave${i}.txt
done
#setup the directries in 2nd host
for (( i=$(($NSLAVES/4+1)); i<=$NSLAVES/2; i++ ))</pre>
do
tar -rf slavedirsH2.tar slave${i}
rm -rf slave${i}
done
scp slavedirsH2.tar root@slaveh2:${WORKDIR}/slavedirsH2.tar
ssh -T slaveh2 <<DERE
cd ${WORKDIR}
mkdir ${STEP} >/dev/null
cd ${STEP}
tar -xf ${WORKDIR}/slavedirsH2.tar
DERE
#setup the directries in 3rd host
for (( i=$(($NSLAVES/2+1)); i<=3*$NSLAVES/4; i++ ))</pre>
do
tar -rf slavedirsH3.tar slave${i}
rm -rf slave${i}
done
scp slavedirsH3.tar root@slaveh3:${WORKDIR}/slavedirsH3.tar
ssh -T slaveh3 <<DERE
cd ${WORKDIR}
mkdir ${STEP} >/dev/null
cd ${STEP}
tar -xf ${WORKDIR}/slavedirsH3.tar
DERE
#setup the directries in 4th host
```

Fujitsu Storage Systems ETERNUS DX600 S3

Fujitsu Limited

APPENDIX E: SPC-1 WORKLOAD GENERATOR INPUT PARAMETERS

```
for (( i=$((3*$NSLAVES/4+1)); i<=$NSLAVES; i++ ))</pre>
do
tar -rf slavedirsH4.tar slave${i}
rm -rf slave${i}
done
scp slavedirsH4.tar root@slaveh4:${WORKDIR}/slavedirsH4.tar
ssh -T slaveh4 <<DERE</pre>
cd ${WORKDIR}
mkdir ${STEP} >/dev/null
cd ${STEP}
tar -xf ${WORKDIR}/slavedirsH4.tar
DERE
```

slave header.txt

Created by <u>Setup2FDRH.sh</u> and used by <u>setup_slave_dirsH.sh</u>.

```
master=masterh
host=#slave1#
javaparms="-Xmx3072m -Xms3072m -Xss512k"
```

start_slavesH.sh

Invoked from <u>doFDRall 1H.sh</u> to start all Slave JVMs prior to each SPC-1 Test or Test Phase execution.

```
#!/bin/bash -x
 STEP=$1
 cd $WORKDIR
 cd $STEP
 #
 # Create Config file of slave
 #
 for (( i=1; i<=$(($NSLAVES/4)); i++ ))</pre>
 do
       (cd slave${i};java ${JAVAPARMS} spc1 -f slave${i}.txt &>
 slave${i}_console_out.txt) &
       sleep 1
 done
 #
 # Create Slave Start Scripts
 #
 # Slaveh2 Server
 echo "#!/bin/bash" > start_slavesH2.sh
 for (( i=$(($NSLAVES/4+1)); i<=$NSLAVES/2; i++ ))</pre>
 do
       echo " ( cd slave${i};java ${JAVAPARMS} spc1 -f slave${i}.txt &>
 slave${i}_console_out.txt ) & >/dev/null" >> start_slavesH2.sh
       echo "sleep 1" >> start_slavesH2.sh
 done
 chmod 777 start_slavesH2.sh
 scp start_slavesH2.sh root@slaveh2:${ROOT}/${jobID}/${STEP}/start_slavesH2.sh
 ssh -T root@slaveh2 <<DHERE</pre>
 cd ${ROOT}/${jobID}/${STEP}
 ./start slavesH2.sh > /dev/null
 DHERE
 # Slaveh3 Server
SPC BENCHMARK 1<sup>TM</sup> V1.14
                                FULL DISCLOSURE REPORT
Fujitsu Limited
```

```
echo "#!/bin/bash" > start_slavesH3.sh
for (( i=$(($NSLAVES/2+1)); i<=3*$NSLAVES/4; i++ ))</pre>
do
     echo " ( cd slave${i};java ${JAVAPARMS} spc1 -f slave${i}.txt &>
slave${i}_console_out.txt ) & >/dev/null" >> start_slavesH3.sh
     echo "sleep 1" >> start_slavesH3.sh
done
chmod 777 start_slavesH3.sh
scp start_slavesH3.sh root@slaveh3:${ROOT}/${jobID}/${STEP}/start_slavesH3.sh
ssh -T root@slaveh3 <<DHERE
cd ${ROOT}/${jobID}/${STEP}
./start_slavesH3.sh > /dev/null
DHERE
# Slaveh4 Server
echo "#!/bin/bash" > start_slavesH4.sh
for (( i=$((3*$NSLAVES/4+1)); i<=$NSLAVES; i++ ))</pre>
do
     echo " ( cd slave${i};java ${JAVAPARMS} spc1 -f slave${i}.txt &>
slave${i}_console_out.txt ) & >/dev/null" >> start_slavesH4.sh
     echo "sleep 1" >> start_slavesH4.sh
done
chmod 777 start_slavesH4.sh
scp start_slavesH4.sh root@slaveh4:${ROOT}/${jobID}/${STEP}/start_slavesH4.sh
ssh -T root@slaveh4 <<DHERE
cd ${ROOT}/${jobID}/${STEP}
./start_slavesH4.sh > /dev/null
DHERE
```

stop_slaves.sh

Invoked from <u>doFDRall_1H.sh</u> to stop all Slave JVMs after each SPC-1 Test or Test Phase terminates.

ssh slaveh1 'pkill java'
ssh slaveh2 'pkill java'
ssh slaveh3 'pkill java'
ssh slaveh4 'pkill java'