

SPC BENCHMARK 1TM FULL DISCLOSURE REPORT

NETAPP, INC. NETAPP FAS3040

(48-HOUR SUSTAINABILITY TEST)

SPC-1 V1.10.1

Submitted for Review: March 18, 2008

First Edition - March 2008

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item has been reviewed by NetApp, Inc. for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in the United States. NetApp, Inc. may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local NetApp, Inc. representative for information on products and services available in your area.

© Copyright NetApp, Inc. 2008. All rights reserved.

Permission is hereby granted to reproduce this document in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark-1, SPC-1, SPC-1 IOPS, and SPC-1 LRT are trademarks of the Storage Performance Council. NetApp and Data ONTAP registered trademarks and RAID DP and Snapshot are trademarks of NetApp, Inc. in the United States and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Submission Identifier: A00062

Submitted for Review: MARCH 18, 2008

Table of Contents

Audit Certification	vii
Audit Certification (cont.)	viii
Letter of Good Faith	ix
Executive Summary	10
Test Sponsor and Contact Information	10
Revision Information and Key Dates	
Tested Storage Product (TSP) Description	
Summary of Results	11
Storage Capacities and Relationships	11
Response Time - Throughput Curve	12
Response Time - Throughput Data	12
Tested Storage Configuration Pricing (Priced Storage Configuration)	13
Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration	13
Benchmark Configuration/Tested Storage Configuration Diagram	14
Benchmark Configuration/Tested Storage Configuration Components	
Configuration Information	16
Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Diag	ram.16
Storage Network Configuration	16
Host System Configuration	16
Customer Tunable Parameters and Options	17
Tested Storage Configuration (TSC) Description	17
SPC-1 Workload Generator Storage Configuration	17
SPC-1 Data Repository	18
Storage Capacities and Relationships	18
SPC-1 Storage Capacities	18
SPC-1 Storage Hierarchy Ratios	18
SPC-1 Storage Capacities and Relationships Illustration	19
Logical Volume Capacity and ASU Mapping	19
SPC-1 Benchmark Execution Results	20
SPC-1 Tests, Test Phases, and Test Runs	20
Primary Metrics Test - Sustainability Test Phase	21
SPC-1 Workload Generator Input Parameters	21
Sustainability Test Results File	21
Sustainability – Data Rate Distribution Data (MB/second)	22

Submission Identifier: A00062

Submitted for Review: MARCH 18, 2008

Sustainability - Data Rate Distribution Graph	22
Sustainability – I/O Request Throughput Distribution Data	23
Sustainability - I/O Request Throughput Distribution Graph	
Sustainability - Average Response Time (ms) Distribution Data	24
Sustainability - Average Response Time (ms) Distribution Graph	
Sustainability – Response Time Frequency Distribution Data	25
Sustainability – Response Time Frequency Distribution Graph	
Sustainability - Measured Intensity Multiplier and Coefficient of Variation	
Primary Metrics Test - IOPS Test Phase	
SPC-1 Workload Generator Input Parameters	27
IOPS Test Results File	27
IOPS Test Run – I/O Request Throughput Distribution Data	28
IOPS Test Run – I/O Request Throughput Distribution Graph	28
IOPS Test Run – Average Response Time (ms) Distribution Data	29
IOPS Test Run – Average Response Time (ms) Distribution Graph	29
IOPS Test Run – Response Time Frequency Distribution Data	30
IOPS Test Run -Response Time Frequency Distribution Graph	30
IOPS Test Run – I/O Request Information	31
IOPS Test Run - Measured Intensity Multiplier and Coefficient of Variation	31
Primary Metrics Test - Response Time Ramp Test Phase	32
SPC-1 Workload Generator Input Parameters	32
Response Time Ramp Test Results File	32
Response Time Ramp Distribution (IOPS) Data	33
Response Time Ramp Distribution (IOPS) Graph	34
SPC-1 LRT TM Average Response Time (ms) Distribution Data	35
SPC-1 LRT TM Average Response Time (ms) Distribution Graph	35
SPC-1 LRT TM (10%) – Measured Intensity Multiplier and Coefficient of Variation	n 36
Repeatability Test	37
SPC-1 Workload Generator Input Parameters	37
Repeatability Test Results File	38
Repeatability 1 LRT – I/O Request Throughput Distribution Data	39
Repeatability 1 LRT – I/O Request Throughput Distribution Graph	39
Repeatability 1 LRT –Average Response Time (ms) Distribution Data	40
Repeatability 1 LRT -Average Response Time (ms) Distribution Graph	40
Repeatability 1 IOPS – I/O Request Throughput Distribution Data	41
Repeatability 1 IOPS – I/O Request Throughput Distribution Graph	41
Repeatability 1 IOPS –Average Response Time (ms) Distribution Data	42
Repeatability 1 IOPS –Average Response Time (ms) Distribution Graph	42
Repeatability 2 LRT – I/O Request Throughput Distribution Data	43

Repeatability 2 LRT – I/O Request Throughput Distribution Graph	43
Repeatability 2 LRT -Average Response Time (ms) Distribution Data	44
Repeatability 2 LRT -Average Response Time (ms) Distribution Graph	44
Repeatability 2 IOPS – I/O Request Throughput Distribution Data	45
Repeatability 2 IOPS – I/O Request Throughput Distribution Graph	45
Repeatability 2 IOPS -Average Response Time (ms) Distribution Data	46
Repeatability 2 IOPS -Average Response Time (ms) Distribution Graph	46
Repeatability 1 (LRT) Measured Intensity Multiplier and Coefficient of Variation	47
Repeatability 1 (IOPS) Measured Intensity Multiplier and Coefficient of Variation.	47
Repeatability 2 (LRT) Measured Intensity Multiplier and Coefficient of Variation	47
Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation.	48
Data Persistence Test	49
SPC-1 Workload Generator Input Parameters	
Data Persistence Test Results File	49
Data Persistence Test Results	50
Priced Storage Configuration Availability Date	51
Pricing Information	51
Anomalies or Irregularities	51
Appendix A: SPC-1 Glossary	52
"Decimal" (powers of ten) Measurement Units	52
"Binary" (powers of two) Measurement Units	52
SPC-1 Data Repository Definitions	52
SPC-1 Data Protection Levels	53
SPC-1 Test Execution Definitions	53
I/O Completion Types	55
SPC-1 Test Run Components	55
Appendix B: Customer Tunable Parameters and Options	56
Windows 2003 Server	56
FAS3040 Storage Controllers	56
Appendix C: Tested Storage Configuration (TSC) Creation	57
Host System	57
Brocade FCP Switches	57
Storage Controllers	57
Initializing Disk Ownership	57
Installing Licenses	58
Base Setup Script - FAS3040 Controllers	58
Host Disk Stripe Setup	59

ntap_spc1_cfg.pl	60
Appendix D: SPC-1 Workload Generator Storage Commands and	0.0
Parameters	66
Appendix E: SPC-1 Workload Generator Input Parameters	67
Primary Metrics Test, Repeatability Test, and Persistence Test Run 1	67
Persistence Test Run 2	68
Appendix F: Third-Party Quotations	69
Host System HBAs	69

AUDIT CERTIFICATION

Steve Daniel NetApp, Inc. 7301 Kit Creek Road, Building 1 Research Triangle Park, NC 27709

March 17, 2008

The SPC Benchmark 1TM results listed below for the NetApp FAS3040 were produced in compliance with the SPC Benchmark 1TM V1.10.1 Remote Audit requirements.

SPC Benchmark 1™ V1.10.1 Results				
Tested Storage Configuration (TSC) Name: NetApp FAS3040				
Metric Reported Result				
SPC-1 IOPS™	30,992.39			
SPC-1 Price-Performance	\$13.58/SPC-1 IOPS™			
Total ASU Capacity	12,586.586 GB			
Data Protection Level Other Data Protection (NetApp RAID DP™)				
Total TSC Price (including three-year maintenance)	\$420,800			

The following SPC Benchmark 1^{TM} Remote Audit requirements were reviewed and found compliant with V1.10.1 of the SPC Benchmark 1^{TM} specification:

- · A Letter of Good Faith, signed by a senior executive.
- The following Data Repository storage items were verified by information supplied by NetApp, Inc.:
 - ✓ Physical Storage Capacity and requirements.
 - ✓ Configured Storage Capacity and requirements.
 - ✓ Addressable Storage Capacity and requirements.
 - ✓ Capacity of each Logical Volume and requirements.
- ✓ Capacity of each Application Storage Unit (ASU) and requirements.
- An appropriate diagram of the Benchmark Configuration (BC)/Tested Storage Configuration (TSC).
- Listings and commands to configure the Benchmark Configuration/Tested Storage Configuration, including customer tunable parameters.
- · Commands and parameters used to configure the SPC-1 Workload Generator.

Storage Performance Council 643 Bair Island Road, Suite 103 Redwood City, CA 94062 <u>AuditService@storageperformance.org</u> 650,556,9384

NetApp, Inc.

AUDIT CERTIFICATION (CONT.)

NetApp FAS3040 SPC-1 Audit Certification Page 2

- · The following Host System requirements were verified by information supplied by NetApp, Inc.:
 - ✓ The type of Host System including the number of processors and main memory.
 - ✓ The presence and version number of the Workload Generator on the Host System.
 - ✓ The TSC boundary within the Host System.
- The execution of each Test, Test Phase, and Test Run was observed and found compliant with all of the requirements and constraints of Clauses 4 and 5 of the SPC-1 Benchmark Specification.
- The Test Results Files and resultant Summary Results Files received from NetApp, Inc. for each of
 following were authentic, accurate, and compliant with all of the requirements and constraints of
 Clauses 4 and 5 of the SPC-1 Benchmark Specification:
 - ✓ Data Persistence Test
 - ✓ Sustainability Test Phase
 - ✓ IOPS Test Phase
 - ✓ Response Time Ramp Test Phase
 - ✓ Repeatability Test
- There were no differences between the Tested Storage Configuration (TSC) used for the benchmark and Priced Storage Configuration.
- The submitted pricing information met all of the requirements and constraints of Clause 8 of the SPC-1 Benchmark Specification.
- The Full Disclosure Report (FDR) met all of the requirements in Clause 9 of the SPC-1 Benchmark Specification.
- This successfully audited SPC measurement is not subject to an SPC Confidential Review.

Audit Notes:

There were no audit notes or exceptions.

Walter E. Baker

Respectfully,

Walter E. Baker SPC Auditor

Storage Performance Council 643 Bair Island Road, Suite 103 Redwood City, CA 94062 <u>AuditService@storageperformance.org</u> 650.556.9384

LETTER OF GOOD FAITH

7 January, 2008

Walter Baker Gradient Systems 643 Blair Island Road, Suite 103 Redwood City, CA 94063-2755

To: Walter Baker

Subject: SPC-1 Letter of Good Faith for the NetApp FAS3040

Network Appliance, Inc is the SPC-1 Test Sponsor for the above listed product. To the best of our knowledge and belief, the required SPC-1 benchmark results and materials we have submitted for that product are complete, accurate, and in full compliance with V1.10.1 of the SPC-1 benchmark specification.

In addition, we have reported any items in the Benchmark Configuration and execution of the benchmark that affected the reported results even if the items are not explicitly required to be disclosed by the SPC-1 benchmark specification.

Sincerely,

Phil Brotherton

Vice President

Enterprise Applications Business Unit

Ell Buthit

Network Appliance, Inc. 495 East Java Drive Sunnyvale, CA 94089 Telephone 408.822.6000 Fax 408.822.4501 www.netapp.com

EXECUTIVE SUMMARY Page 10 of 69

EXECUTIVE SUMMARY

Test Sponsor and Contact Information

	Test Sponsor and Contact Information
Test Sponsor Primary Contact	NetApp, Inc. – http://www.netapp.com/ Steve Daniel – daniel@netapp.com 7301 Kit Creek Road Building 1 Research Triangle Park, NC 27709 Phone (919) 476-5726 FAX: (919) 476-4272
Test Sponsor Alternate Contact	NetApp, Inc. – http://www.netapp.com/ Saad Jafri – saad@netapp.com/ 7301 Kit Creek Road Building 1 Research Triangle Park, NC 27709 Phone (919) 476-5541 FAX: (919) 476-4272-
Auditor	Storage Performance Council – http://www.storageperformance.org Walter E. Baker – AuditService@StoragePerformance.org 643 Bair Island Road, Suite 103 Redwood City, CA 94063 Phone: (650) 556-9384 FAX: (650) 556-9385

Revision Information and Key Dates

Revision Information and Key Dates			
SPC-1 Specification revision number	V1.10.1		
SPC-1 Workload Generator revision number	V2.00.04a		
Date Results were first used publicly	March 18, 2008		
Date the FDR was submitted to the SPC	March 18, 2008		
Date the TSC is available for shipment to customers	March 18, 2008		
Date the TSC completed audit certification	March 17, 2008		

Tested Storage Product (TSP) Description

The NetApp FAS3040 is the newest entry in the FAS3000 series of Enterprise Storage Systems. The NetApp FAS3000 series delivers outstanding value through excellent performance, best-in-class scalability, and proven lower TCO than other midrange storage systems.

These enterprise storage systems have the versatility to simultaneously meet diverse needs—SAN and NAS, primary and secondary storage—while providing high levels of availability. The FAS3040 system handles complex requirements in a way that actually simplifies the storage infrastructure and improves productivity.

The NetApp FAS3040 delivers excellent performance, whether the storage need is for SAN-based business applications, technical applications, or home directories. With large cache memory configurations, expandable high-performance I/O, 4-gigabit FC SAN support, and support for 10-Gigabit Ethernet, the FAS3040 delivers exceptional midrange systems performance

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

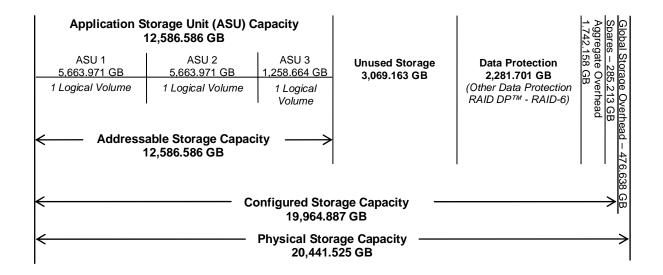
NetApp, Inc. NetApp FAS3040 (48-hour Sustainability Test)

EXECUTIVE SUMMARY Page 11 of 69

Summary of Results

SPC-1 Results				
Tested Storage Configuration (TSC) Name: NetApp FAS3040 (48-hour Sustainability Test)				
Metric Reported Result				
SPC-1 IOPS™	30,992.39			
SPC-1 Price-Performance	\$13.58/SPC-1 IOPS™			
Total ASU Capacity	12,586.586 GB			
Data Protection Level	Other Data Protection (NetApp RAID DP™)			
Total TSC Price (including three-year maintenance)	\$420,800			

SPC-1 IOPS™ represents the maximum I/O Request Throughput at the 100% load point.

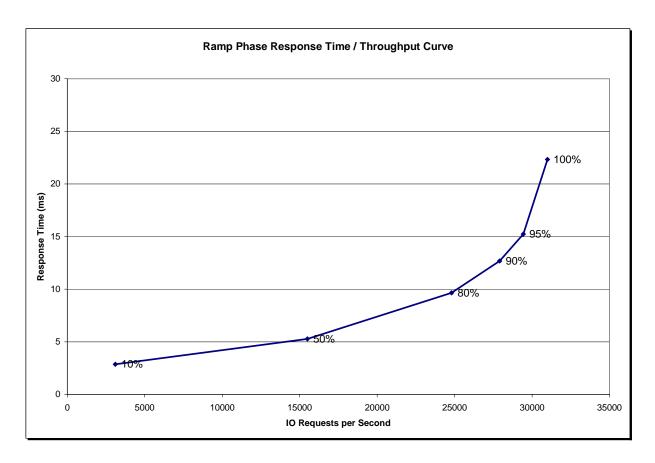

Total ASU (Application Storage Unit) **Capacity** represents the total storage capacity read and written in the course of executing the SPC-1 benchmark.

A **Data Protection Level** of "Other Protection Level" utilized NetApp's RAID-DPTM, a RAID 6 implementation, which provides double-parity RAID protection against data loss with negligible performance overhead and no cost penalty compared to single-parity RAID. Additional information is available at the following location:

http://www.netapp.com/products/software/raid-dp.html

Storage Capacities and Relationships

The following diagram documents the various storage capacities, used in this benchmark, and their relationships.



EXECUTIVE SUMMARY Page 12 of 69

Response Time - Throughput Curve

The Response Time-Throughput Curve illustrates the Average Response Time (milliseconds) and I/O Request Throughput at 100%, 95%, 90%, 80%, 50%, and 10% of the workload level used to generate the SPC-1 IOPS $^{\text{TM}}$ metric.

The Average Response Time measured at any of the above load points cannot exceed 30 milliseconds or the benchmark measurement is invalid.

Response Time - Throughput Data

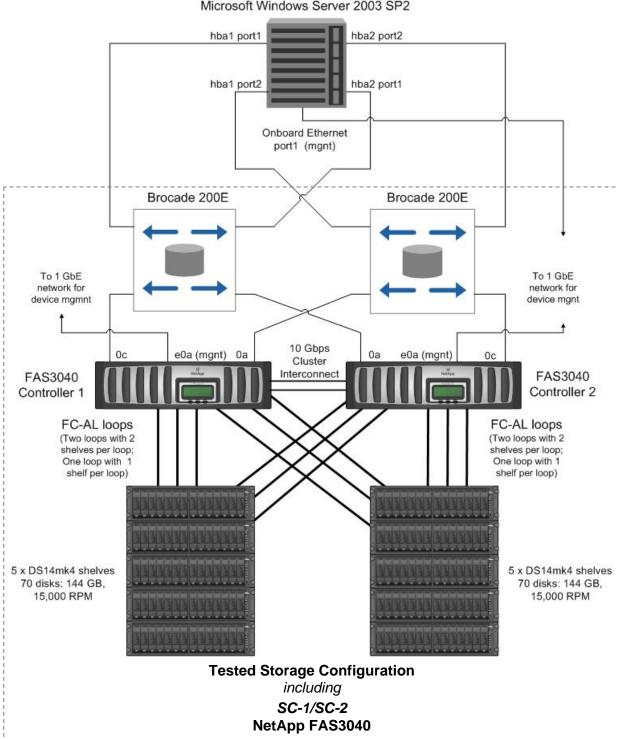
	10% Load	50% Load	80% Load	90% Load	95% Load	100% Load
I/O Request Throughput	3,100.30	15,503.48	24,800.07	27,902.87	29,442.24	30,992.39
Average Response Time (ms):						
All ASUs	2.86	5.27	9.65	12.68	15.23	22.32
ASU-1	3.81	6.69	11.73	15.13	17.92	25.47
ASU-2	3.75	6.88	12.31	15.99	19.05	27.41
ASU-3	0.47	1.56	4.08	6.06	7.83	13.41
Reads	6.12	10.34	17.24	21.68	25.22	34.01
Writes	0.74	1.97	4.70	6.83	8.72	14.70

EXECUTIVE SUMMARY Page 13 of 69

Tested Storage Configuration Pricing (Priced Storage Configuration)

Storage System			Ext Qty	List Price	Disc %	Net Price	Ext Net Price	Vendor
SES-SYSTEM	Support Edge Services Attach PN		1	\$0.00	0	\$0.00	\$0.00	1
X1941A-R6-C	Cable, Cluster 4X, Copper, 5M, -C, R6		2	\$97.00	0	\$97.00	\$194.00	1
X2055A-R6-C	HBA,FC,2-Port,4Gb,Disk,Optical,PCle,-C,R6		4	\$2,300.00	0	\$2,300.00	\$9,200.00	1
X505-R6-C	System Lift Handle, Detachable, -C, R6		2	\$0.00	0	\$0.00	\$0.00	1
X5515A-R6-C	Rackmount Kit,4N2,DS14-Middle,-C,R6		12	\$100.00	0	\$100.00	\$1,200.00	1
X6530-R6-C	Cable,Patch,FC SFP to SFP,0.5M,-C,R6		16	\$0.00	0	\$0.00	\$0.00	1
X6536-R6-C	Cable,Optical,50u,2GHz/KM/MM,LC/LC,5M,-C,R6		12	\$150.00	0	\$150.00	\$1,800.00	1
X6539-R6-C	SFP,Optical,4.25Gb,-C,R6		8	\$120.00	0		\$960.00	1
X800E-R6-C	Power Cable North America,-C,R6		24	\$0.00	0	\$0.00	\$0.00	1
DOC-3XXX-C	Documents,3XXX,-C		1	\$0.00	0	\$0.00	\$0.00	1
FAS3040AS-BASE-R5-C	FAS3040A,IB,ACT-ACT,SAN,OS,-C,R5		2	\$16,700.00	0	\$16,700.00	\$33,400.00	1
FCP	Onboard Target Ports, Quantity		4	\$0.00	0	\$0.00	\$0.00	1
LOOPS	Storage Loops Attached Quantity		4	\$0.00	0	\$0.00	\$0.00	1
MULTIPATH-C	Multipath configuration		1	\$0.00	0	\$0.00	\$0.00	1
X74015B-ESH4-R5-C	DS14MK4 SHLF,AC,14x144GB,15K,B,ESH4,-C,R5		10	\$27,418.00	0	\$27,418.00	\$274,180.00	1
SW-T4C-CLUSTERSAN-C	CFO Software,T4C,SAN Bndl		2	\$4,175.00	0	\$4,175.00	\$8,350.00	1
SW-T4C-FCPSAN-C	FCP Software,T4C,SAN Bndl		2	\$0.00	0	\$0.00	\$0.00	1
SW-T4C-ISCSISAN-C	iSCSI Software,T4C,SAN Bndl		2		0	\$0.00	\$0.00	1
SW-ONTAP4-3XXX	SW,DataONTAP4,3XXX		2	\$0.00	0	\$0.00	\$0.00	1
SVC-A-IN-NBR-Z	HW Support,Premium,4hr,z	Mths: 36	1	\$64,775.49	0	\$64,775.49	\$64,775.49	1
SW-SSP-A-IN-NBR-Z	SW Subs,Standard Replace,Inst,NBD,z	Mths: 36	1	\$3,006.00	0	\$3,006.00	\$3,006.00	1
	Storage Subtotal						\$397,065.49	
Host Attach Hardware and	I Software							
SW-DSM-MPIO-WINDOWS	3		1	\$0.00	0	\$0.00	\$0.00	1
X6518A-R6	Cable,Optical,LC/LC,5M,R6		4	\$150.00	0	\$150.00	\$600.00	1
SW-DSM-MPIO-WIN	Software, Data ONTAP DSM for Windows MPIO		1	\$1,000.00	0	\$1,000.00	\$1,000.00	1
SW-FAK-WIN	FCP Windows Host Utilities		1	\$75.00	0	\$75.00	\$75.00	1
SW-SSP-DSM-MPIO-WIN	SW Subs, Data ONTAP DSM for Windows MPIO	Mths: 36	1	\$360.00	0	\$360.00	\$360.00	1
X1611A-R5-C	Brocade 16-Port 200e FC Full Fab Switch,-C,R5		2	\$8,700.00	0	\$8,700.00	\$17,400.00	1
QLA2462-E-SP	QLA2462-E-SP - 2 PORT 4GB PCI-X		2	\$1,700.00	0	\$1,700.00	\$3,400.00	2
2 PORT 4GB PCI-X - 3 YR	- 4HOUR HARDWARE REPLACEMENT		2	\$450.00	0	\$450.00	\$900.00	2
	Host Subtotal						\$23,735.00	
	Total						\$420,800.49	

Notes: Vendor #1 is NetApp Vendor #2 is AltaTech


Differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration

There were no differences between the Tested Storage Configuration and the Priced Storage Configuration.

EXECUTIVE SUMMARY Page 14 of 69

Benchmark Configuration/Tested Storage Configuration Diagram

HS-1
IBM System x3650
Single quad core Xeon
Microsoft Windows Server 2003 SP2

SPC Benchmark 1^{tm} V1.10.1

FULL DISCLOSURE REPORT

NetApp, Inc.

Submitted for Review: MARCH 18, 2008

EXECUTIVE SUMMARY Page 15 of 69

Benchmark Configuration/Tested Storage Configuration Components

Host System:	Tested Storage Configuration (TSC):
HS-1: IBM System x3650	2 – Qlogic QLA2462, 2-Port 4Gb PCI-X, R6 HBAs
Single quad core Xeon processor	(Host System) 4 – Qlogic QLE2462, 2-Port 4Gb PCIe, R6 HBAs
2.66 GHz CPUs, 8192 KB cache per CPU	(2 per FAS3040 controller)
18 GB main memory	2 – Brocade 16-Port 200e FC switches
Windows Server 2003 with SP2	SC-1/SC-2: NetApp FAS3040
Priced Host System Software: FCP Windows Host Utilities 3.0 for Native OS Data ONTAP® DSM 3.2 for Windows MPIO	2 – FAS3040 Storage Controllers each with: 2 – AMD 2.4 GHz Opteron CPUs 4 GB main memory 512 KB L2 cache
PCI-X	512 MB NVRAM
WG	2 FCP front-end connections 6 FCP backend connections
	140 – 144 GB 15K RPM disk drives

Submission Identifier: A00062

Submitted for Review: MARCH 18, 2008

In each of the following sections of this document, the appropriate Full Disclosure Report requirement, from the SPC-1 benchmark specification, is stated in italics followed by the information to fulfill the stated requirement.

CONFIGURATION INFORMATION

Benchmark Configuration (BC)/Tested Storage Configuration (TSC) Diagram

Clause 9.2.4.4.1

A one page Benchmark Configuration (BC)/Tested Storage Configuration (TSC) diagram shall be included in the Executive Summary...

The Benchmark Configuration (BC)/Tested Storage Configuration (TSC) is illustrated on page 14 (Benchmark Configuration/Tested Storage Configuration Diagram).

Storage Network Configuration

Clause 9.2.4.4.1

...

5. If the TSC contains network storage, the diagram will include the network configuration. If a single diagram is not sufficient to illustrate both the Benchmark Configuration and network configuration in sufficient detail, the Benchmark Configuration diagram will include a high-level network illustration as shown in Figure 9-8. In that case, a separate, detailed network configuration diagram will also be included as described in Clause 9.2.4.4.2.

Clause 9.2.4.4.2

If a storage network was configured as a part of the Tested Storage Configuration and the Benchmark Configuration diagram described in Clause 9.2.4.4.1 contains a high-level illustration of the network configuration, the Executive Summary will contain a one page topology diagram of the storage network as illustrated in Figure 9-9.

The Benchmark Configuration (BC)/Tested Storage Configuration (TSC), including the network configuration, is illustrated on page 14 (Benchmark Configuration/Tested Storage Configuration Diagram).

Host System Configuration

Clause 9.2.4.4.3

The FDR shall minimally contain, for each Host System running the Workload Generator, a listing of the following:

- 1. Number and type of CPUs.
- 2. Main memory capacity.
- 3. Cache memory capacity.
- 4. Number and type of disk controllers or Host Bus Adapters.

The details of the Host System configuration may be found on page 14 (Benchmark Configuration/Tested Storage Configuration Diagram).

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

Submitted for Review: MARCH 18, 2008

Customer Tunable Parameters and Options

Clause 9.2.4.5.1

All Benchmark Configuration (BC) components with customer tunable parameter and options that have been altered from their default values must be listed in the FDR. The FDR entry for each of those components must include both the name of the component and the altered value of the parameter or option. If the parameter name is not self-explanatory to a knowledgeable practitioner, a brief description of the parameter's use must also be included in the FDR entry.

"Appendix B: Customer Tunable Parameters and Options" on page 56 contains the customer tunable parameters and options that have been altered from their default values for this benchmark.

Tested Storage Configuration (TSC) Description

Clause 9.2.4.5.2

The FDR must include sufficient information to recreate the logical representation of the TSC. In addition to customer tunable parameters and options (Clause 4.2.4.5.3), that information must include, at a minimum:

- A diagram and/or description of the following:
 - > All physical components that comprise the TSC. Those components are also illustrated in the BC Configuration Diagram in Clause 9.2.4.4.1 and/or the Storage Network Configuration Diagram in Clause 9.2.4.4.2.
 - > The logical representation of the TSC, configured from the above components that will be presented to the Workload Generator.
- Listings of scripts used to create the logical representation of the TSC.
- If scripts were not used, a description of the process used with sufficient detail to recreate the logical representation of the TSC.

"Appendix C: Tested Storage Configuration (TSC) Creation" on page 57 contains the detailed information that describes how to create and configure the logical TSC.

SPC-1 Workload Generator Storage Configuration

Clause 9.2.4.5.3

The FDR must include all SPC-1 Workload Generator storage configuration commands and parameters.

The SPC-1 Workload Generator storage configuration commands and parameters for this measurement appear in "Appendix D: SPC-1 Workload Generator Storage Commands and Parameters" on page 66.

DATA REPOSITORY Page 18 of 69

SPC-1 DATA REPOSITORY

This portion of the Full Disclosure Report presents the detailed information that fully documents the various SPC-1 storage capacities and mappings used in the Tested Storage Configuration. "SPC-1 Data Repository Definitions" on page 52 contains definitions of terms specific to the SPC-1 Data Repository.

Storage Capacities and Relationships

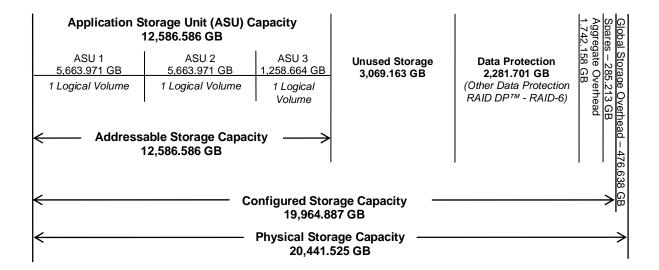
Clause 9.2.4.6.1

Two tables and an illustration documenting the storage capacities and relationships of the SPC-1 Storage Hierarchy (Clause 2.1) shall be included in the FDR.

SPC-1 Storage Capacities

SPC-1 Storage Capacities					
Storage Hierarchy Component	Units	Capacity			
Total ASU Capacity	Gigabytes (GB)	12,586.586			
Addressable Storage Capacity	Gigabytes (GB)	12,586.586			
Configured Storage Capacity	Gigabytes (GB)	19,964.887			
Physical Storage Capacity	Gigabytes (GB)	20,441.525			
Data Protection (Other Data Protection)	Gigabytes (GB)	2,281.701			
Required Storage (spares/metadata)	Gigabytes (GB)	2,027.370			
Global Storage Overhead	Gigabytes (GB)	476.638			
Total Unused Storage	Gigabytes (GB)	3,069.163			

SPC-1 Storage Hierarchy Ratios


	Addressable Storage Capacity	Configured Storage Capacity	Physical Storage Capacity
Total ASU Capacity	100.00%	63.04%	61.57%
Required for Data Protection (Other)		11.43%	11.16%
Addressable Storage Capacity		63.04%	61.57%
Required Storage		10.15%	9.92%
Configured Storage Capacity			97.67%
Global Storage Overhead			2.33%
Unused Storage:			
Addressable	0.00%		
Configured		15.37%	
Physical			0.00%

DATA REPOSITORY Page 19 of 69

The Physical Storage Capacity consisted of 20,441.525 GB distributed over 140 disk drives each with a formatted capacity of 146.011 GB. There was 0.000 GB (0.00%) of Unused Storage within the Physical Storage Capacity. Global Storage Overhead consisted of 476.638 GB (2.33%) of Physical Storage Capacity. There was 3,069.163 GB (15.37%) of Unused Storage within the Configured Storage Capacity. The Total ASU Capacity utilized 100.00% of the Addressable Storage Capacity resulting in 0.000 GB (0.00%) of Unused Storage within the Addressable Storage Capacity.

SPC-1 Storage Capacities and Relationships Illustration

The various storage capacities configured in the benchmark result are illustrated below (not to scale).

Logical Volume Capacity and ASU Mapping

Clause 9.2.4.6.2

A table illustrating the capacity of each ASU and the mapping of Logical Volumes to ASUs shall be provided in the FDR. ... Logical Volumes shall be sequenced in the table from top to bottom per its position in the contiguous address space of each ASU. The capacity of each Logical Volume shall be stated. ... In conjunction with this table, the Test Sponsor shall provide a complete description of the type of data protection (see Clause 2.4.5) used on each Logical Volume.

Logi	Logical Volume Capacity and Mapping								
ASU-1 (5,663.971 GB)	ASU-2 (5,663.971 GB)	ASU-3 (1,258.664 GB)							
1 Logical Volume 5,663.971 GB per Logical Volume (5,663.971 GB used per Logical Volume)	1 Logical Volume 5,663.971 GB per Logical Volume (5,663.971 GB used per Logical Volume)	1 Logical Volume 1,258.664 GB per Logical Volume (1,258.664 GB used per Logical Volume)							

The Data Protection Level used for all Logical Volumes was Other Data Protection as described on page 11. See "ASU Configuration" in the **IOPS Test Results File** for more detailed configuration information.

SPC-1 BENCHMARK EXECUTION RESULTS

This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs. "SPC-1 Test Execution Definitions" on page 53 contains definitions of terms specific to the SPC-1 Tests, Test Phases, and Test Runs.

Clause 5.4.3

The Tests must be executed in the following sequence: Primary Metrics, Repeatability, and Data Persistence. That required sequence must be uninterrupted from the start of Primary Metrics to the completion of Persistence Test Run 1. Uninterrupted means the Benchmark Configuration shall not be power cycled, restarted, disturbed, altered, or adjusted during the above measurement sequence. If the required sequence is interrupted other than for the Host System/TSC power cycle between the two Persistence Test Runs, the measurement is invalid.

SPC-1 Tests, Test Phases, and Test Runs

The SPC-1 benchmark consists of the following Tests, Test Phases, and Test Runs:

Primary Metrics Test

- > Sustainability Test Phase and Test Run
- > IOPS Test Phase and Test Run
- > Response Time Ramp Test Phase
 - 95% of IOPS Test Run
 - o 90% of IOPS Test Run
 - 80% of IOPS Test Run
 - 50% of IOPS Test Run
 - o 10% of IOPS Test Run (LRT)

Repeatability Test

- > Repeatability Test Phase 1
 - o 10% of IOPS Test Run (LRT)
 - o IOPS Test Run
- Repeatability Test Phase 2
 - o 10% of IOPS Test Run (LRT)
 - o IOPS Test Run

Data Persistence Test

- > Data Persistence Test Run 1
- Data Persistence Test Run 2

Each Test is an atomic unit that must be executed from start to finish before any other Test, Test Phase, or Test Run may be executed.

The results from each Test, Test Phase, and Test Run are listed below along with a more detailed explanation of each component.

Primary Metrics Test - Sustainability Test Phase

Clause 5.4.4.1.1

The Sustainability Test Phase has exactly one Test Run and shall demonstrate the maximum sustainable I/O Request Throughput within at least a continuous three (3) hour Measurement Interval. This Test Phase also serves to insure that the TSC has reached Steady State prior to reporting the final maximum I/O Request Throughput result (SPC-1 $IOPS^{TM}$).

Clause 5.4.4.1.2

The computed I/O Request Throughput of the Sustainability Test must be within 5% of the reported SPC-1 IOPS™ result.

Clause 5.4.4.1.4

The Average Response Time, as defined in Clause 5.1.1, will be computed and reported for the Sustainability Test Run and cannot exceed 30 milliseconds. If the Average Response time exceeds that 30-milliseconds constraint, the measurement is invalid.

Clause 9.2.4.7.1

For the Sustainability Test Phase the FDR shall contain:

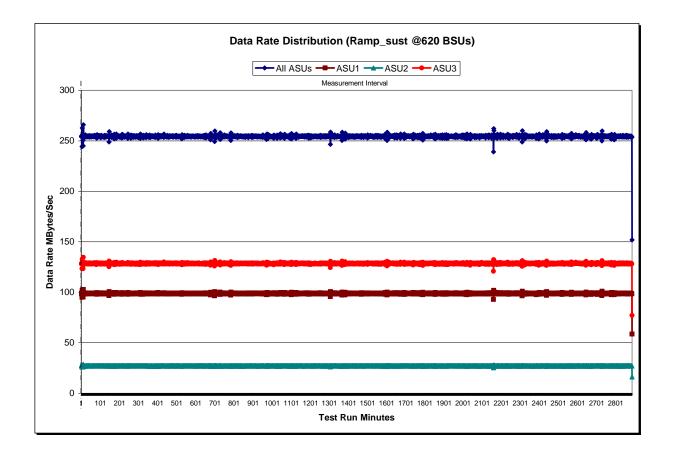
- 1. A Data Rate Distribution graph and data table.
- 2. I/O Request Throughput Distribution graph and data table.
- 3. A Response Time Frequency Distribution graph and table.
- 4. An Average Response Time Distribution graph and table.
- 5. The human readable Test Run Results File produced by the Workload Generator (may be included in an appendix).
- 6. A listing or screen image of all input parameters supplied to the Workload Generator (may be included in an appendix).
- 7. The Measured Intensity Multiplier for each I/O stream.
- 8. The variability of the Measured Intensity Multiplier, as defined in Clause 5.3.13.3.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in "Appendix E: SPC-1 Workload Generator Input Parameters" on Page 67.

Sustainability Test Results File

A link to the test results file generated from the Sustainability Test Run is listed below.

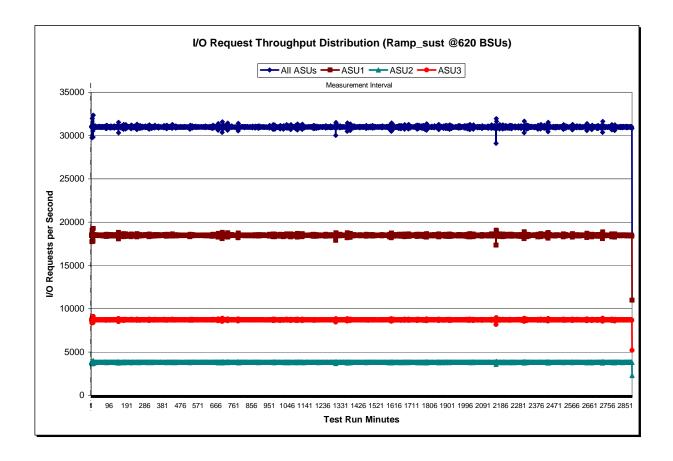

Sustainability Test Results File

Submitted for Review: MARCH 18, 2008

Sustainability - Data Rate Distribution Data (MB/second)

The size of the table precludes its inclusion in this document. The table may be viewed in the Sustainability Test Results File.

Sustainability - Data Rate Distribution Graph

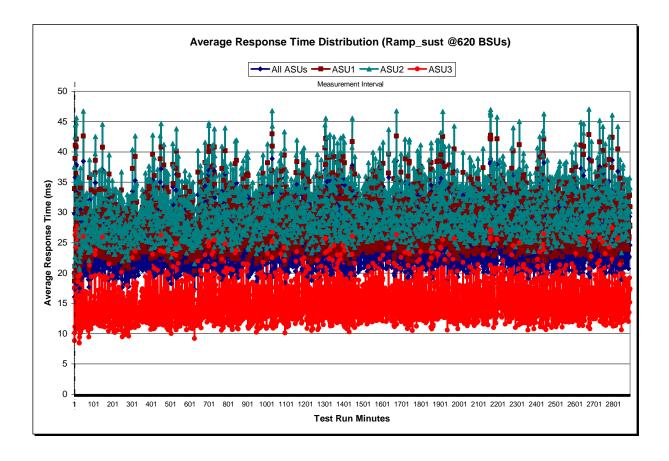


Submitted for Review: MARCH 18, 2008

Sustainability - I/O Request Throughput Distribution Data

The size of the table precludes its inclusion in this document. The table may be viewed in the Sustainability Test Results File.

Sustainability - I/O Request Throughput Distribution Graph

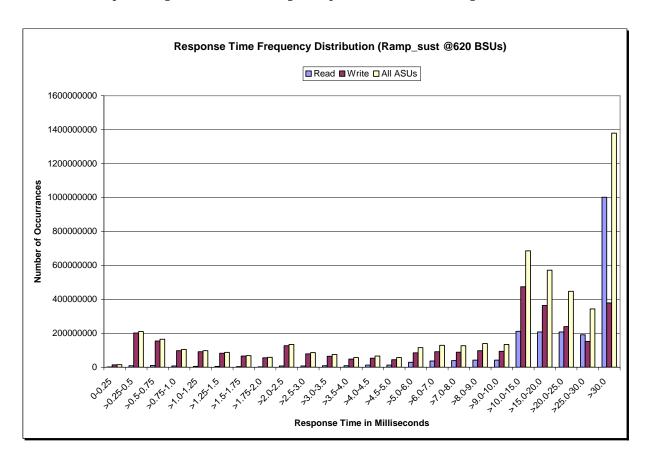


Submitted for Review: MARCH 18, 2008

Sustainability - Average Response Time (ms) Distribution Data

The size of the table precludes its inclusion in this document. The table may be viewed in the Sustainability Test Results File.

Sustainability - Average Response Time (ms) Distribution Graph



Submitted for Review: MARCH 18, 2008

Sustainability - Response Time Frequency Distribution Data

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	1,444,708	8,357,957	10,327,862	7,373,171	5,618,296	4,501,899	3,442,833	2,875,323
Write	14,043,659	201,813,665	154,979,088	97,422,393	91,641,905	82,708,825	65,301,212	55,518,274
All ASUs	15,488,367	210,171,622	165,306,950	104,795,564	97,260,201	87,210,724	68,744,045	58,393,597
ASU1	8,883,893	101,849,905	73,192,138	46,475,073	43,470,146	38,860,175	30,700,341	26,079,661
ASU2	1,579,197	20,453,814	15,488,743	9,875,192	9,066,192	8,037,075	6,321,885	5,361,412
ASU3	5,025,277	87,867,903	76,626,069	48,445,299	44,723,863	40,313,474	31,721,819	26,952,524
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	7,394,630	7,163,999	9,393,952	9,151,344	12,203,439	13,110,020	29,744,824	37,076,773
Write	126,547,375	78,888,977	64,924,355	47,826,845	53,245,501	44,454,250	85,276,089	91,675,891
All ASUs	133,942,005	86,052,976	74,318,307	56,978,189	65,448,940	57,564,270	115,020,913	128,752,664
ASU1	59,599,878	39,178,837	35,408,549	28,227,473	33,231,136	30,543,794	62,697,502	71,987,318
ASU2	12,293,487	8,116,232	7,369,520	5,758,632	6,704,851	5,946,023	12,095,894	13,704,104
ASU3	62,048,640	38,757,907	31,540,238	22,992,084	25,512,953	21,074,453	40,227,517	43,061,242
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	39,030,414	42,332,660	41,584,484	212,146,771	208,375,086	207,451,379	191,092,531	1,001,269,439
Write	88,277,801	97,325,474	93,218,035	474,160,787	363,517,573	240,166,229	152,193,696	378,621,948
All ASUs	127,308,215	139,658,134	134,802,519	686,307,558	571,892,659	447,617,608	343,286,227	1,379,891,387
ASU1	72,219,216	78,838,034	76,386,293	384,857,575	330,343,425	277,256,244	227,151,849	1,014,887,158
ASU2	13,726,589	14,999,374	14,424,798	74,208,633	64,847,331	54,621,706	45,094,888	228,659,506
ASU3	41,362,410	45,820,726	43,991,428	227,241,350	176,701,903	115,739,658	71,039,490	136,344,723

Sustainability - Response Time Frequency Distribution Graph

Sustainability - Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.0 and 5.3.13.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.13.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.350	0.2818	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
COV	0.004	0.001	0.003	0.001	0.005	0.003	0.004	0.001

Primary Metrics Test - IOPS Test Phase

Clause 5.4.2.2

The IOPS Test Phase consists of one Test Run at the 100% load point with a Measurement Interval of ten (10) minutes. The IOPS Test Phase immediately follows the Sustainability Test Phase without any interruption or manual intervention.

The IOPS Test Run generates the SPC-1 IOPSTM primary metric, which is computed as the I/O Request Throughput for the Measurement Interval of the IOPS Test Run.

The Average Response Time is computed for the IOPS Test Run and cannot exceed 30 milliseconds. If the Average Response Time exceeds the 30 millisecond constraint, the measurement is invalid.

Clause 9.2.4.7.2

For the IOPS Test Phase the FDR shall contain:

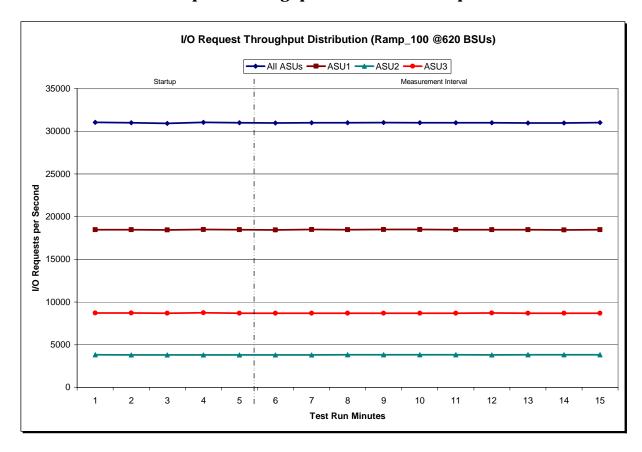
- 1. I/O Request Throughput Distribution (data and graph).
- 2. A Response Time Frequency Distribution.
- 3. An Average Response Time Distribution.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied t the Workload Generator.
- 6. The total number of I/O Requests completed in the Measurement Interval as well as the number of I/O Requests with a Response Time less than or equal to 30 milliseconds and the number of I/O Requests with a Response Time greater than 30 milliseconds.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in "Appendix E: SPC-1 Workload Generator Input Parameters" on Page 67.

IOPS Test Results File

A link to the test results file generated from the IOPS Test Run is listed below.

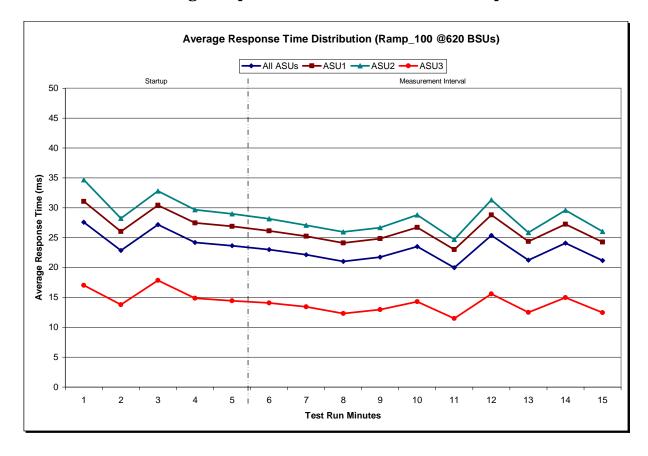

IOPS Test Results File

Submitted for Review: MARCH 18, 2008

IOPS Test Run - I/O Request Throughput Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	9:11:32	9:16:33	0-4	0:05:01
Measurement Interval	9:16:33	9:26:33	3-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	31,036.75	18,482.07	3,826.28	8,728.40
1	30,991.60	18,465.98	3,802.38	8,723.23
2	30,926.00	18,438.47	3,797.90	8,689.63
3	31,045.25	18,494.03	3,817.32	8,733.90
4	30,994.75	18,477.28	3,814.60	8,702.87
5	30,956.02	18,455.98	3,814.43	8,685.60
6	30,999.65	18,486.32	3,810.97	8,702.37
7	30,993.80	18,467.10	3,827.12	8,699.58
8	31,007.03	18,485.60	3,819.40	8,702.03
9	31,003.83	18,484.77	3,817.53	8,701.53
10	31,002.58	18,479.65	3,829.98	8,692.95
11	31,001.15	18,474.50	3,815.45	8,711.20
12	30,970.48	18,469.23	3,818.70	8,682.55
13	30,978.37	18,455.48	3,820.68	8,702.20
14	31,011.02	18,482.13	3,827.42	8,701.47
Average	30,992.39	18,474.08	3,820.17	8,698.15

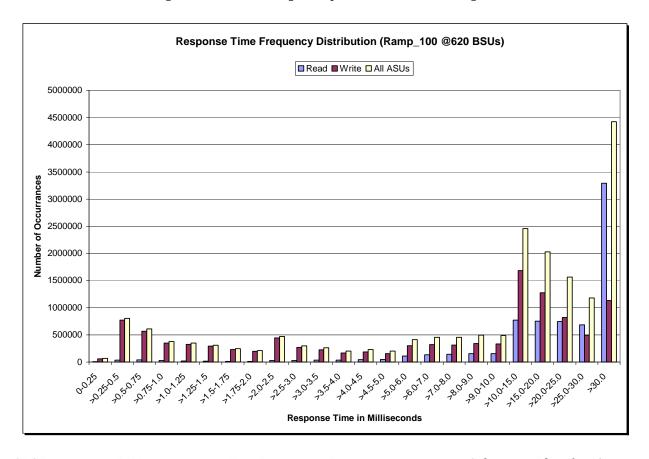
IOPS Test Run - I/O Request Throughput Distribution Graph



Submitted for Review: MARCH 18, 2008

IOPS Test Run - Average Response Time (ms) Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	9:11:32	9:16:33	0-4	0:05:01
Measurement Interval	9:16:33	9:26:33	3-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	27.56	31.06	34.67	17.04
1	22.84	26.01	28.21	13.80
2	27.17	30.41	32.80	17.85
3	24.19	27.45	29.68	14.88
4	23.66	26.90	28.98	14.44
5	23.00	26.13	28.16	14.08
6	22.15	25.25	27.07	13.41
7	21.02	24.10	25.95	12.30
8	21.73	24.82	26.66	12.98
9	23.49	26.72	28.80	14.29
10	19.99	23.01	24.69	11.49
11	25.39	28.78	31.31	15.60
12	21.22	24.37	25.83	12.49
13	24.09	27.25	29.60	14.96
14	21.17	24.26	26.03	12.47
Average	22.32	25.47	27.41	13.41


IOPS Test Run - Average Response Time (ms) Distribution Graph

IOPS Test Run - Response Time Frequency Distribution Data

Response Time (ms)	0-0.25	>0.25-0.5	>0.5-0.75	>0.75-1.0	>1.0-1.25	>1.25-1.5	>1.5-1.75	>1.75-2.0
Read	8121	34,791	41,144	28,135	21,267	17,086	13,003	11,043
Write	60421	771,324	568,439	347,953	325,750	292,129	230,729	197,051
All ASUs	68542	806,115	609,583	376,088	347,017	309,215	243,732	208,094
ASU1	39982	390,758	269,446	166,616	155,678	137,726	109,554	93,048
ASU2	6967	79,680	57,634	35,787	32,419	28,819	22,395	19,198
ASU3	21593	335,677	282,503	173,685	158,920	142,670	111,783	95,848
Response Time (ms)	>2.0-2.5	>2.5-3.0	>3.0-3.5	>3.5-4.0	>4.0-4.5	>4.5-5.0	>5.0-6.0	>6.0-7.0
Read	27,748	26,908	34,548	34,353	44,999	47,895	109,650	135,033
Write	441,947	269,545	225,279	166,309	184,994	154,294	300,502	321,347
All ASUs	469,695	296,453	259,827	200,662	229,993	202,189	410,152	456,380
ASU1	209,351	135,594	124,209	100,074	117,685	108,029	225,104	256,903
ASU2	43,342	28,186	25,920	20,788	23,945	21,077	43,963	49,155
ASU3	217,002	132,673	109,698	79,800	88,363	73,083	141,085	150,322
Response Time (ms)	>7.0-8.0	>8.0-9.0	>9.0-10.0	>10.0-15.0	>15.0-20.0	>20.0-25.0	>25.0-30.0	>30.0
Read	143,426	154,465	153,237	774,285	753,628	746,088	685,504	3,293,581
Write	314,072	342,246	332,205	1,683,231	1,275,406	820,603	497,135	1,131,975
All ASUs	457,498	496,711	485,442	2,457,516	2,029,034	1,566,691	1,182,639	4,425,556
ASU1	261,278	282,592	276,377	1,384,679	1,177,444	979,537	795,958	3,286,386
ASU2	49,926	53,851	52,506	268,057	232,724	193,556	158,012	744,099
ASU3	146,294	160,268	156,559	804,780	618,866	393,598	228,669	395,071

IOPS Test Run - Response Time Frequency Distribution Graph

SPC Benchmark 1^{tm} V1.10.1

FULL DISCLOSURE REPORT

NetApp, Inc.

NetApp FAS3040 (48-hour Sustainability Test)

Submission Identifier: A00062 Submitted for Review: MARCH 18, 2008

IOPS Test Run - I/O Request Information

I/O Requests Completed in the Measurement Interval	I/O Requests Completed with Response Time = or < 30 ms	I/O Requests Completed with Response Time > 30 ms
18,594,824	14,169,268	4,425,556

IOPS Test Run - Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.0 and 5.3.13.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.13.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2810	0.0701	0.2100	0.0180	0.0701	0.0352	0.2807
COV	0.003	0.001	0.002	0.002	0.006	0,002	0,003	0.001

Primary Metrics Test - Response Time Ramp Test Phase

Clause 5.4.2.3

The Response Time Ramp Test Phase consists of five Test Runs, one each at 95%, 90%, 80%, 50%, and 10% of the load point (100%) used to generate the SPC-1 IOPSTM primary metric. Each of the five Test Runs has a Measurement Interval of ten (10) minutes. The Response Time Ramp Test Phase immediately follows the IOPS Test Phase without any interruption or manual intervention.

The five Response Time Ramp Test Runs, in conjunction with the IOPS Test Run (100%), demonstrate the relationship between Average Response Time and I/O Request Throughput for the Tested Storage Configuration (TSC) as illustrated in the response time/throughput curve on page 12.

In addition, the Average Response Time measured during the 10% Test Run is the value for the SPC-1 LRT^{TM} metric. That value represents the Average Response Time of a lightly loaded TSC.

Clause 9.2.4.7.3

The following content shall appear in the FDR for the Response Time Ramp Phase:

- 1. A Response Time Ramp Distribution.
- 2. The human readable Test Run Results File produced by the Workload Generator for each Test Run within the Response Time Ramp Test Phase.
- 3. For the 10% Load Level Test Run (SPC-1 LRTTM metric) an Average Response Time Distribution.
- 4. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in "Appendix E: SPC-1 Workload Generator Input Parameters" on Page 67.

Response Time Ramp Test Results File

A link to each test result file generated from each Response Time Ramp Test Run list listed below.

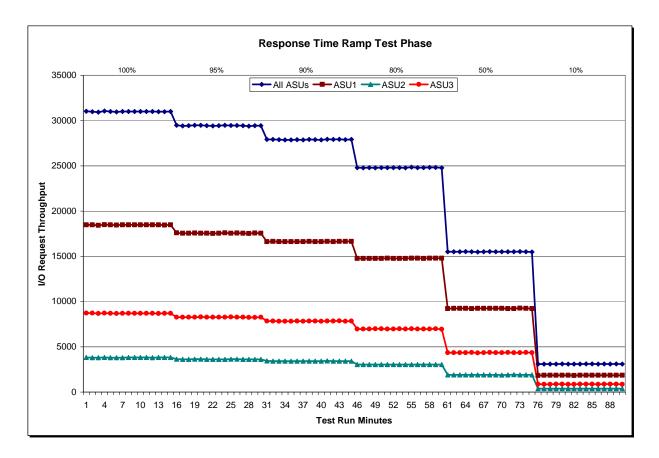
95% Load Level

90% Load Level

80% Load Level

50% Load Level

10% Load Level

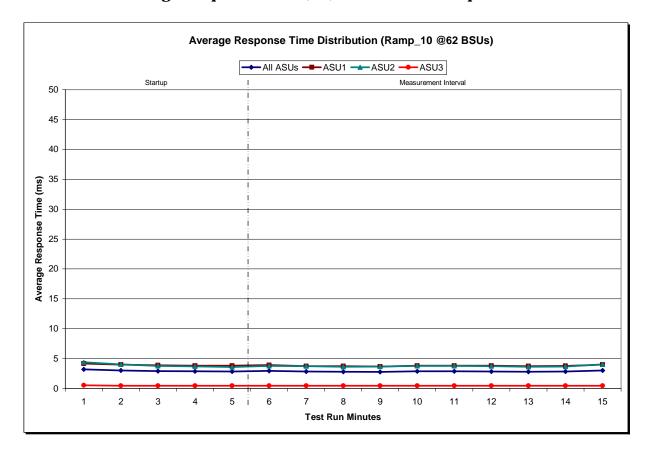

Response Time Ramp Distribution (IOPS) Data

The five Test Runs that comprise the Response Time Ramp Phase are executed at 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit (BSU) load level used to produce the SPC-1 IOPS™ primary metric. The 100% BSU load level is included in the following Response Time Ramp data tables and graphs for completeness.

Start-Up/Ramp-Up	100% Load Level - 620 BSUs	Start	Stop	Interval		95% Load Level - 589 BSUs	Start	Stop	Interval	Duration
Gilla										
1 10 10 10 10 10 10 10										
1 0,991 0 18,465,9 3,002,36 7,232 1 29,425,9 7,514 20 3,671,16 8,262,9 8,263 2 29,425,9 7,554,50 3,615,0 8,265,9 8,265,0 4 30,945,7 18,477,2 8,314,60 5 7,02,87 4 29,475,6 7,555,37 3,615,8 8,289,0 5 7,284,7 7 7 6 30,996,6 18,465,8 3,814,45 8,685,60 5 29,435,60 7,524,56 3,621,50 8,269,10 8,467,10 3,814,50 8,685,60 5 29,447,60 7,555,32 3,623,40 8,269,10 8,467,10 3,814,50 8,685,60 7 29,447,67 7,555,32 3,624,43 8,270,22 8 31,070,00 18,467,10 3,814,50 8,695,60 7 29,447,67 7,555,32 3,624,43 8,270,22 8 31,070,00 18,467,7 3,475,50 3,702,37 8 29,473,00 17,552,35 3,624,43 8,270,22 8 31,070,10 18,474,50 3,481,50 8,281,50 1 29,440,00 17,552,35 3,624,43 8,270,22 1 3,481,50 1 3,1001,15 18,474,50 3,481,50 8,281,50 1 29,440,50 17,552,35 3,624,43 8,270,22 1 3,481,50										
1,000 1,00	0									
3 31,045,25 18,494,03 8,187,32 8,733,90 3 29,486,48 17,581,95 36,65,62 8,277,02 4 30,994,75 18,455,98 3,814,43 8,685,06 5 29,432,05 17,554,37 36,23,92 8,264,17 6 30,996,85 18,467,10 3,687,12 8,699,58 7 29,447,97 17,554,32 3,624,43 8,270,22 8 31,007,03 18,467,10 3,827,12 8,699,58 7 29,447,97 17,554,32 3,624,43 8,270,22 9 31,003,38 18,447,77 3,817,53 8,715,3 9 29,469,50 17,565,15 3,628,13 8,289,02 10 31,002,58 18,479,66 3,829,86 8,702,27 11 29,443,15 17,564,55 3,624,13 8,279,15 12 30,997,04 18,469,23 3,817,67 8,682,55 12 29,399,37 13 3,097,37 18,455,48 3,820,68 8,702,20 13 29,447,62 17,565,57 3,624,73 8,279,15 13 30,978,37 18,455,48 3,820,68 8,702,20 13 29,447,62 17,565,57 3,624,73 8,267,32 20% Load Level - 588 BSUS Start Stop Interval Duration 80% Load Level - 496 BSUS Start 17,540,88 3,610,48 28,779,14 29,463,14 29,463 3,487,45 3,48	1									
3.0994.7 19.477.28 3.814.60 8.702.87 4 29.475.95 17.581.57 3.631.53 8.289.05 6. 30.999.60 19.486.32 3.810.97 8.702.37 6 29.415.52 17.524.58 3.621.50 8.289.05 7. 30.993.80 18.467.10 3.827.12 8.699.58 7 29.447.00 77.593.23 2.624.43 8.2702.69 8. 31,007.03 18.485.60 3.819.40 8.702.03 8 29.477.30 17.581.58 5.621.50 8.289.05 9. 31,003.83 18.447.75 3.815.58 8.701.53 9 29.468.00 17.552.53 5.622.81 8.288.05 10 31,002.15 18.474.55 3.815.48 8.280.58 10 29.468.00 17.552.53 5.622.81 8.288.05 11 30,097.08 18.469.23 3.818.70 8.682.55 12 29.399.25 17.593.23 3.624.28 2.826.03 31 30,973.37 18.467.48 3.802.74 8.701.77 8.698.15 4.29.480.00 47.569.15 3.622.81 2.826.03 31 30,973.47 18.474.60 3.827.42 8.701.47 8.701.47 8.287.47 8.287.47 8.287.47 8.287.47 32 32 32 32 32 32 32		,			,		,			
5 0.996.6 18.45.98 3.814.49 8.68.6 5 2.94.5.0 17.54.38 3.62.10 8.269.17 17.54.58 3.62.10 8.269.18 17.54.88 3.62.10 8.269.18 17.54.88 3.62.10 8.269.18 17.54.88 3.62.10 8.269.18 17.54.88 3.62.18 17.54.8						3				
Separate						5				
				,	,	-				,
B 31,007,03 18,485,60 3,819,40 8,702,03 B 29,477,30 17,552,35 3,629,13 8,228,02 D 31,003,83 84,477,85 38,715,58 8,701,55 92,464,00 17,552,35 3,629,13 8,288,02 D 31,001,15 84,475,50 38,154 8,711,20 11 29,484,00 17,553,53 3,601,42 8,279,15 D 30,970,48 18,469,23 3,818,70 8,682,55 12 29,399,25 17,553,23 3,601,43 8,279,15 D 30,978,37 84,455,48 3,826,88 8,702,20 13 29,445,00 17,550,33 3,604,73 8,279,15 D 30,978,37 84,455,48 3,826,88 8,702,20 13 29,445,00 17,550,33 3,604,73 8,279,15 D 30,978,37 84,470,8 3,827,70 8,698,15 4 29,460,00 17,550,33 3,602,91 3,266,75 D 30,978,37 84,470,8 3,827,70 8,698,15 4 4 29,460,00 17,550,35 3,602,91 3,269,75 D 30,978,37 84,470,8 3,827,70 8,698,15 4 4 29,460,00 17,550,35 3,602,91 3,269,75 D 30,463,3 9,564,3										
9 31,003.83 18,484.77 3,817.53 8,701.53 29,469.50 17,552.35 3,629.13 8,286.02 10 10 10 17,565.15 3,632.22 8,266.03 11 31,001.55 18,474.50 3,815.45 8,711.20 11 29,443.15 17,549.58 3,614.42 8,279.15 12 29,392.15 17,582.53 3,601.31 8,268.02 4,269.02 14 31,001.55 14 29,431.51 17,565.77 3,601.33 3,978.27 4,845.48 3,820.68 8,702.20 13 29,447.62 17,565.77 3,621.73 8,257.32 3,629.13 3,978.23 3,601.31 8,267.52 4,269.02										
10 31,002.58 18,479.65 3,829.88 8,082.95 10 29,464.00 17,566.15 3,632.82 8,286.03 11 31,001.15 18,475.03 3,818.70 8,682.55 12 29,399.25 17,535.23 3,009.13 8,254.88 13 30,978.37 18,455.48 3,812.42 8,701.47 14 29,426.00 17,540.08 13,001.03 8,275.62 14 31,011.02 18,482.13 3,827.42 8,701.47 14 29,426.00 17,540.08 13,001.03 8,275.62 190%.Load Level - 598 BSUS 141 31,011.02 18,482.13 3,827.42 8,701.47 14 29,426.00 17,540.08 13,003.8275.02 190%.Load Level - 598 BSUS 141 510.00 14.48 19.42.24 17,551.59 3,620.91 3,269.75 190%.Load Level - 598 BSUS 141 510.00 14.48 19.54.24 17,551.59 3,620.91 19.62.64 19.52.										
11 31,001-15 18,474-50 3,815-45 8,711-20 11 29,443.15 17,549.58 3,814.42 8,279.15 13 30,970-81 81,480-23 3,818-70 8,825-5 12 29,930-25 7,258.55 3,209.13 8,254.88 3,200.88 8,702.20 13 29,447.62 17,561.55 3,262.73 8,257.82 3,001.15 8,254.88 3,200.88 8,702.20 13 29,447.62 17,561.55 3,262.73 8,257.52 3,001.15 3,275.62 3,001.15 3,						~				
12 30.978.07 81.469.02 3.918.70 8.682.55 12 29.390.25 7.535.23 3.060.13 3.254.88 3.091.37 3.0978.37 4.310.10.2 18.482.13 3.827.42 8.701.47 4.942.00 7.540.05 3.620.17 3.098.23 3.992.39 4.474.08 3.820.17 8.698.15 4.005.01 4.0										
13 30,978.37 18,455.48 3,820.68 8,702.20 14 3 29,447.62 17,565.57 3,624.73 8,257.32 14 31,011.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 3,101.02 18,482.13 18,482										
14 31,011.02 18,482.13 3,827.42 8,701.47 4,29,48.00 17,540.08 3,610.30 8,275.62										
Measurement Interval Supers Super									,	
Measurement Interval 9.4f-42 9.4f-43 9.54 0.05.01 Start-Up/Ramp-Up 9.56.47 10.01.48 0.4 0.05.01		Start	Stop	Interval	Duration		Start	Stop	Interval	Duration
Measurement Intervals										
GO second intervals All ASUs ASU-1 ASU-2 ASU-3 (60 second intervals) AII ASUs ASU-1 ASU-2 ASU-3 ASU-1 ASU-2 ASU-3 (7.786).02 0 24,794.25 14,775.87 3,045.05 6,973.32 3,045.06 6,973.32 2,7860.08 1,24,777.90 14,760.90 3,043.68 6,973.32 2,7860.08 1,6616.03 3,428.97 7,820.15 3 2,785.70 14,777.75 3,044.06 6,978.87 4,278.69.70 16,662.24 3,428.22 7,819.02 4 24,803.32 14,774.00 3,044.06 6,978.87 6,278.61.12 16,610.28 3,424.87 7,826.06 6 24,791.12 14,775.57 3,044.25 6,969.79 7,913.40 16,652.58 3,426.23 7,834.55 7 2,4801.52 14,777.00 3,048.42 6,969.79 7,913.40 16,652.83 3,426.23 7,834.55 7 2,4801.52 14,770.20 3,048.76 6,967.47 9,278.75.47 16,610.23 3,426.58 7,843.77 8 2,786.29 14,768.48 3,046.97 6,967.47 9,278.75.47 16,610.23 3,444.33 3,443.33 7,862.00 12,248.22 14,790.75 3,047.26 6,969.38 11 2,790.608 16,664.38 3,443.33 3,443.33 7,862.00 12,248.22 14,768.25 3,047.18 6,969.38 11 2,799.608 16,664.48 3,428.43 7,853.17 11 2,4793.85 14,766.73 3,048.06 6,978.32 12,279.23.77 16,639.35 3,431.42 7,862.00 12,248.22 14,779.87 3,045.25 6,960.38 12,279.23.77 16,639.35 3,431.42 7,862.00 12,248.22 14,768.20 14,779.87 3,045.25 6,960.38 12,249.24 14,769.75 3,047.18 6,969.38 14,279.63 14,279.75 14,279.75 14,279.63 14,279.75 14,279.										
1 27,920.90 16,647.50 3,433.32 7,840.08 1 24,777.90 14,760.90 3,043.68 6,973.32 2,7869.08 16,616.97 3,789.77 2 22,7869.72 16,622.48 3,428.27 7,823.15 3 24,785.70 14,771.75 3,034.08 6,979.87 6,927.50 14,771.75 3,040.08 6,979.87 6,927.50 14,771.75 3,040.08 6,979.87 6,927.50 16,631.62 3,420.18 7,843.50 5 24,789.70 14,771.75 3,040.25 6,980.90 14,771.75 14,771.75 3,040.08 6,979.87 6 27,861.12 16,610.28 3,424.75 7,826.08 6 24,791.12 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,771.75 14,775.57 3,044.25 6,980.90 14,778.15 14,779.15 14,775.57 3,044.25 6,980.90 14,779.80 14,790.75 14,790.80 14,790		All ASUs	ASU-1	ASU-2	ASU-3		All ASUs		ASU-2	
2 2,7,884,67 16,620,82 3,433,13 7,830,72 2 2,72,85 14,762,95 3,051,53 6,977,87 4 27,889,08 16,616,97 3,428,97 7,823,15 3 24,785,70 14,771,07 3,034,08 6,979,87 5 27,895,30 16,631,62 3,428,12 7,819,00 5 24,797,07 14,779,78 3,047,53 6,990,75 6,967,787 6 27,861,12 16,610,28 3,424,75 7,826,08 6 24,797,07 14,779,78 3,047,53 6,996,75 6,967,74 7 27,913,40 16,662,58 3,426,25 7,834,87 8 24,782,92 14,762,20 3,046,97 6,967,47 9 27,875,47 16,616,23 3,444,33 7,820,08 24,783,42 14,790,75 3,047,72 6,996,38 10 27,940,88 16,684,38 3,428,14 7,882,17 10 24,795,12 14,779,07 3,047,18 6,996,38 11 27,960,81 16,684,38 3,428,18 7,843,87 12 24,793,23 14,781,55 3,047,18 6,996,38 <t< th=""><th>0</th><th>27,911.17</th><th>16,622.90</th><th>3,437.35</th><th>7,850.92</th><th>0</th><th></th><th>14,775.87</th><th>3,045.05</th><th>6,973.33</th></t<>	0	27,911.17	16,622.90	3,437.35	7,850.92	0		14,775.87	3,045.05	6,973.33
3 27,869.08 16,616.97 3,428.97 7,823.15 4 24,780.72 14,771.75 3,034.08 6,979.87 5 27,899.53 16,631.62 3,428.29 7,819.02 4 24,803.32 14,774.00 3,044.25 6,980.90 6 27,895.30 16,610.28 3,424.75 7,2820.08 6 24,791.12 14,775.57 3,044.25 6,997.130 8 27,881.58 16,610.28 3,426.58 7,824.80 6 24,791.12 14,775.57 3,044.25 6,971.30 9 27,875.47 16,610.03 3,426.58 7,843.87 8 24,788.29 14,770.20 3,048.78 6,967.47 9 27,875.47 16,616.03 3,431.40 7,852.03 9 24,835.42 14,790.75 3,047.72 6,996.33 11 27,904.88 16,664.38 3,442.83 7,852.17 11 24,798.12 14,778.75 3,048.80 6,978.32 12 27,932.37 16,664.32 3,429.18 7,862.50 14	1	27,920.90	16,647.50	3,433.32	7,840.08	1	24,777.90	14,760.90	3,043.68	6,973.32
4 2,7,89,72 16,622.48 3,428.22 7,819.02 4 24,803.32 14,774.00 3,048.42 6,980.90 6 27,861.12 16,610.28 3,420.13 7,843.50 6 24,797.07 14,779.75 3,047.53 6,999.75 7 27,913.40 16,652.58 3,426.23 7,834.58 7 24,801.52 14,770.20 3,048.78 6,982.53 8 27,885.87 16,618.23 3,426.58 7,843.77 8 24,782.92 14,766.75 3,046.97 6,982.53 10 27,940.88 16,651.03 3,444.33 7,825.17 10 24,789.12 14,780.75 3,047.12 6,999.95 10 27,992.87 16,631.83 3,444.33 7,852.17 10 24,789.12 14,780.75 3,044.83 3,048.89 6,978.32 12 27,902.87 16,631.83 3,431.42 7,862.00 12 24,812.08 14,780.74 3,048.89 6,978.32 13 27,992.87 16,633.83 3,431.42 7,862.07 13 24,812.08 14,779.73 3,045.53 6,978.12	2	27,884.67	16,620.82	3,433.13	7,830.72	2	24,792.35	14,762.95	3,051.53	6,977.87
5 27,895,30 16,631,62 3,420,18 7,843,50 5 24,797,07 14,779,78 3,047,53 6,989,75 6 27,891,34 16,610,28 3,424,75 7,826,08 6 24,791,12 14,779,78 3,044,25 6,982,53 8 27,888,58 16,618,23 3,426,58 7,843,77 8 24,782,92 14,780,83 3,047,12 6,982,53 9 27,875,47 16,610,33 3,444,33 7,842,17 10 24,798,12 14,781,55 3,047,18 6,989,55 10 27,940,88 16,654,38 3,444,33 7,842,17 10 24,798,12 14,781,55 3,047,18 6,989,38 11 27,906,08 16,624,48 3,428,43 7,852,17 11 24,798,12 14,781,55 3,048,80 6,978,12 13 27,896,35 16,644,32 3,429,18 7,845,60 14 24,766,20 14,779,48 3,044,25 6,985,15 50%-Load Level - 310 SUS Start Stop Interval 1,224,76	3	27,869.08	16,616.97	3,428.97	7,823.15	3	24,785.70	14,771.75	3,034.08	6,979.87
6 27,861.12 16,610.28 3,426.25 7,826.08 6 24,791.12 14,775.57 3,044.25 6,932.53 8 27,888.58 16,618.23 3,426.58 7,834.58 7 24,801.52 14,770.20 3,044.28 6,982.53 8 27,888.58 16,618.03 3,426.58 7,843.67 8 24,782.92 14,766.48 3,046.77 6,967.32 9 27,875.47 16,616.03 3,434.33 7,882.17 10 24,798.12 14,781.55 3,047.72 6,996.93 11 27,906.08 16,624.48 3,428.43 7,855.17 11 24,798.12 14,781.55 3,047.18 6,969.38 12 27,932.37 16,638.95 3,425.12 7,820.77 13 24,812.08 14,778.15 3,048.26 6,985.15 14 27,991.01 16,644.23 3,429.18 7,840.87 4 4,822.45 14,779.27 3,035.26 6,985.15 50% Load Level - 310 BSUs Start Stol. 7,840.87 7,840.87	4		16,622.48		7,819.02	4				6,980.90
Feature 1 7 27,913,40 16,682,58 3,426,58 7,834,77 4,801,522 14,770,20 3,046,77 6,962,53 9 27,875,47 16,616,03 3,431,40 7,828,03 9 24,835,22 14,768,248 3,046,97 6,967,72 10 27,940,88 16,654,38 3,444,33 7,821,77 110 24,793,85 14,781,55 3,047,18 6,998,38 11 27,992,37 16,638,95 3,431,42 7,862,07 13 24,821,52 14,766,73 3,042,85 6,970,12 4 27,919,10 16,643,43 3,428,47 7,829,77 13 24,822,45 14,794,47 3,042,85 6,970,12 4 27,910,1 16,633,24 3,428,16 7,845,07 4 4,766,20 14,779,47 3,042,85 6,971,12 50% Load Level - 310 SUs Start 50p Interval 0.05:01 50x 4 1,779,48 3,042,85 6,951,14 Measurement Interval 10:11:52 10:11:52 50x 4						5				
8 27,885.58 16,618.23 3,426.58 7,843.77 8 24,782.92 14,768.48 3,046.97 6,967.47 9 27,875.47 16,616.33 3,41.40 7,828.03 9 24,835.42 14,791.55 3,047.72 6,996.98 10 27,906.08 16,654.33 3,428.43 7,852.07 11 24,793.85 14,766.73 3,048.06 6,978.32 12 27,932.37 16,638.95 3,431.42 7,862.00 12 24,812.08 14,767.73 3,048.80 6,978.32 14 27,919.10 16,644.32 3,425.12 7,882.97 13 24,822.45 14,794.45 3,042.85 6,950.82 50% Load Level - 310 BSUs Start Stop Interval Duration 10% Load Level - 62 BSUs Start Stop Interval Duration 50% Load Level - 310 ESUs Start Stop Interval Duration 10% Load Level - 62 BSUs Start Stop Interval Duration 5tart-Up/Ramp-Up 10:11:52 10:16:53		,			,	-	,		,	,
1,000 1,00										
10 27,940.88 16,654.38 3,444.33 7,842.17 10 24,798.12 14,781.55 3,047.18 6,959.38 11 27,906.08 16,624.48 3,428.43 7,853.17 11 24,793.85 14,766.73 3,048.80 6,978.32 12 27,932.37 16,638.95 3,431.42 7,862.00 12 24,812.08 14,787.42 3,054.55 6,970.12 14 27,919.10 16,644.32 3,429.18 7,845.60 14 24,766.20 14,779.48 3,042.85 6,985.15 14 24,766.20 14,779.48 3,042.85 6,976.18 14 24,766.20 14,779.48 3,046.25 14,767.48 14 24,766.20 14,779.48 3,046.25 14,767.48 14 24,766.20 14,779.48 3,046.25 14,767.48 14 24,766.20 14,779.48 3,046.25 14,767.48					,					
1						-				
12 27,932.37 16,638.95 3,431.42 7,862.00 12 24,812.08 14,787.42 3,054.55 6,970.12 13 27,896.35 16,641.47 3,425.12 7,845.60 14 24,766.20 14,779.48 3,042.85 6,985.15 50% Load Level - 310 BSUs Start Stop Interval Duration 10% Load Level - 62 BSUs Start Stop Interval 0:05:01 Measurement Interval 10:16:53 10:26:53 5-14 0:10:00 Measurement Interval 10:31:58 0-4 0:05:01 Measurement Interval All ASUs ASU-1 ASU-2 ASU-3 (60 second intervals) All ASUs ASU-1 ASU-2 ASU-3 (60 second intervals) All ASUs ASU-2 ASU-3 (60 second intervals) All ASUs ASU-1 ASU-3 1 15,497.25 9,243.62 1,908.55 4,345.08 1 3,080.03 1,843.63 383.40 866.48 2 1 5,514.12 9,245.18 1,905.48 4,365.37 2 3,095.06										
13 27,896.35 16,641.47 3,425.12 7,829.77 13 24,822.45 14,794.45 3,042.85 6,985.15 4 27,919.10 16,644.32 3,429.18 7,845.60 7,840.87 Average 24,800.07 14,779.48 3,042.85 6,950.82 50% Load Level - 310 BSUs Start Stop Interval Duration 10% Load Level - 62 BSUs Start Stop Interval Duration 50% Load Level - 310 BSUs Start Stop Interval Duration 10% Load Level - 62 BSUs Start Stop Interval Duration 60 second intervals 10:16:53 10:26:53 5-14 0:10:00 Measurement Interval 10:31:58 10:41:58 5-14 0:10:00 60 second intervals 15,496.42 9,235.32 1,908.90 4,352.20 0 3,091.60 1,839.87 378.20 876.25 1 15,497.25 9,243.62 1,908.55 4,345.08 1 3,089.03 1,843.73 378.25 866.75 2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,845.63 383.40 866.48 3 15,519.02 9,251.48 1,905.43 4,362.10 3 3,100.42 1,846.88 383.15 870.38 4 15,503.07 9,233.60 1,905.18 4,365.85 5 3,095.08 1,844.33 368.80 878.97 5 15,485.87 9,249.78 1,899.72 4,356.85 7 3,095.00 1,841.22 379.33 865.15 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,085.70 1,841.22 379.33 865.15 7 15,504.58 9,252.33 1,899.90 4,350.52 8 3,105.42 1,853.35 381.05 871.02 9 15,504.58 9,252.23 1,899.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.17 379.43 865.85 12 15,504.58 9,252.23 1,899.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 13 15,504.58 9,252.23 1,899.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 14 15,467.68 9,248.20 1,906.88 4,364.75 13 3,100.50 1,850.78 384.02 865.85 15 15,504.58 9,256.81 1,905.73 4,356.89 11 3,100.50 1,850.73 384.02 865.85 14 15,467.68 9,248.20 1,906.88 4,364.95 14 3,100.50 1,850.78 384.02 865.85 15 15,										
14 27,919.10 16,644.32 3,429.18 7,845.60 Average 24,766.20 14,779.87 3,035.52 6,950.82 4,800.07 14,779.88 3,046.42 6,974.18 50% Load Level - 310 BSUs Start Stop Interval Duration Start-Up/Ramp-Up 10:11:52 10:16:53 0-4 0:05:01 Start-Up/Ramp-Up 10:26:57 10:31:58 0-4 0:05:01 Measurement Interval 10:16:53 10:26:53 5-14 0:10:00 Measurement Interval 15,496.42 9,243.60 1,908.55 4,345.08 1 3,098.03 1,843.73 378.55 866.75 2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,845.63 383.40 866.48 3 15,503.07 9,241.00 1,907.68 4,354.32 6 3,095.07 1,844.33 386.80 878.97 15,515.35 9,244.613 1,907.68 4,354.32 6 3,095.07 1,841.22 379.33 865.15 7 15,515.35 9,224.52 1,899.90 4,365.25 10 3,092.45 1,851.53 383.40 865.85 1 1,503.05 9,245.88 9,255.23 1,889.98 4,359.37 9 3,112.05 1,845.85 379.97 870.88 1 1,503.05 9,249.78 1,899.90 4,365.95 1 1,405.67 1,847.73 384.10 865.85 1 1,503.05 9,249.78 1,899.90 4,365.95 1 1,405.67 1,845.85 379.97 870.88 15,503.05 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.40 865.85 1 1,503.67 9,228.92 1,909.00 4,367.95 1 1,505.677 9,228.92 1,909.00 4,367.95 1 1,505.677 9,228.92 1,909.00 4,367.95 1 1,505.677 1,847.73 384.10 873.83 12,503.42 15,503.42 9,246.85 1,905.73 4,359.93 12,3101.47 1,849.22 379.83 872.42 13,546.85 9,246.60 1,906.88 4,364.77 13,310.50 1,850.78 384.02 865.70 14,709.88 1,850.57 13,540.57 14,709.88 1,850.57 13,540.57 1,850.57 13,540.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 14,709.88 1,850.57 1,850.57 1,850.57 1,850.57 1,850.57 1,850.57 1,850.57										
Nergage 27,902.87 16,633.24 3,428.76 7,840.87 Nergage 24,800.07 14,779.48 3,046.42 6,974.18										
Start-Up/Ramp-Up										
Start-Up/Ramp-Up										
Measurement Interval 10:16:53 10:26:53 5-14 0:10:00 Measurement Interval 10:31:58 10:41:58 5-14 0:10:00 (60 second intervals) All ASUs ASU-1 ASU-2 ASU-3 (60 second intervals) AII ASUS ASU-1 ASU-2 ASU-3 ASU-1 ASU-2 ASU-3 (60 second intervals) AII ASUS ASU-1 ASU-2 ASU-3 ASU-2 A										
(60 second intervals) All ASUs ASU-1 ASU-2 ASU-3 (60 second intervals) All ASUs ASU-1 ASU-2 ASU-3 0 15,496.42 9,235.32 1,908.90 4,352.20 0 3,091.60 1,839.87 378.20 873.53 1 15,497.25 9,243.62 1,908.55 4,345.08 1 3,095.52 1,845.63 383.40 866.75 2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,845.63 383.40 866.48 3 15,519.02 9,251.48 1,905.43 4,365.18 4 3,110.10 1,846.88 383.15 870.38 4 15,503.97 9,233.60 1,905.18 4,365.18 4 3,110.10 1,844.33 386.80 878.97 5 15,485.87 9,246.13 1,907.68 4,354.32 6 3,095.70 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.92 4,365.85 7 3,096.70										
0 15,496.42 9,235.32 1,908.90 4,352.20 0 3,091.60 1,839.87 378.20 873.53 1 15,497.25 9,243.62 1,908.55 4,345.08 1 3,089.03 1,843.73 378.55 866.75 2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,846.63 383.40 866.48 3 15,519.02 9,251.48 1,905.43 4,362.10 3 3,100.42 1,846.88 383.15 870.38 4 15,503.97 9,233.60 1,905.43 4,365.18 4 3,110.10 1,844.33 386.80 878.97 5 15,485.87 9,246.13 1,903.18 4,336.55 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,085.70 1,844.22 379.33 865.15 7 15,515.35 9,249.78 1,899.92 4,350.52 3,105.42 1,853.35 381.05										
1 15,497.25 9,243.62 1,908.55 4,345.08 1 3,089.03 1,843.73 378.55 866.75 2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,845.63 383.40 866.48 3 15,519.02 9,221.48 1,905.43 4,362.10 3 3,100.42 1,846.88 383.15 870.38 4 15,503.97 9,233.60 1,905.18 4,365.18 4 3,110.10 1,844.33 386.80 878.97 5 15,485.87 9,246.13 1,907.68 4,354.32 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,095.08 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,504.58 9,252.63 1,889.99 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,506.77 9,228.92 1,909.90 <th></th>										
2 15,514.12 9,243.90 1,913.85 4,356.37 2 3,095.52 1,845.63 383.40 866.48 3 15,519.02 9,251.48 1,905.43 4,362.10 3 3,100.42 1,846.88 383.15 870.38 4 15,503.97 9,233.60 1,905.18 4,365.18 4 3,110.10 1,844.33 386.80 878.97 5 15,485.87 9,246.13 1,905.18 4,336.55 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,085.70 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,503.05 9,252.63 1,899.90 4,350.52 8 3,105.42 1,853.35 381.05 871.02 9 15,504.58 9,252.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,499.92 9,234.93 1,914.30 <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1									
3 15,519.02 9,251.48 1,905.43 4,362.10 4 15,503.97 9,233.60 1,905.18 4,365.18 4 3,110.10 1,844.33 386.80 878.97 5 15,485.87 9,246.13 1,903.18 4,336.55 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,095.70 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.97 4,356.58 7 3,096.70 1,845.85 379.97 870.88 8 15,503.05 9,252.63 1,899.90 4,350.52 8 3,105.42 1,853.35 381.05 871.02 9 15,504.58 9,252.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,506.77 9,228.92 1,909.90 4,367.95 10 3,092.45 1,847.77 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,359.93 12 3,101.47 1,847.73 384.1	2									
5 15,485.87 9,246.13 1,903.18 4,336.55 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,085.70 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,504.58 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,504.58 9,255.23 1,889.98 4,359.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,534.32 9,268.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,90	3									
5 15,485.87 9,246.13 1,903.18 4,336.55 5 3,095.08 1,854.23 378.22 862.63 6 15,503.00 9,241.00 1,907.68 4,354.32 6 3,085.70 1,841.22 379.33 865.15 7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,504.58 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,504.58 9,255.23 1,889.98 4,359.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,534.32 9,268.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,90	4					4				
7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,503.05 9,252.63 1,899.90 4,350.52 8 3,105.42 1,853.35 381.05 871.02 9 15,504.58 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,506.77 9,228.92 1,909.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,549.92 9,284.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70	5	15,485.87				5				862.63
7 15,515.35 9,249.78 1,899.72 4,365.85 7 3,096.70 1,845.85 379.97 870.88 8 15,503.05 9,252.63 1,899.90 4,350.52 8 3,105.42 1,853.35 381.05 871.02 9 15,504.58 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,506.77 9,228.92 1,909.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,549.92 9,284.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70	6					6				865.15
9 15,504.58 9,255.23 1,889.98 4,359.37 9 3,112.05 1,851.53 383.42 877.10 10 15,506.77 9,228.92 1,909.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,543.32 9,248.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.42 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70	7	15,515.35		1,899.72		7	3,096.70	1,845.85		870.88
10 15,506.77 9,228.92 1,909.90 4,367.95 10 3,092.45 1,847.17 379.43 865.85 11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,534.32 9,268.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.85	8	15,503.05	9,252.63	1,899.90	4,350.52	8	3,105.42	1,853.35	381.05	871.02
11 15,499.92 9,234.93 1,914.30 4,350.68 11 3,105.67 1,847.73 384.10 873.83 12 15,534.32 9,268.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70						-				
12 15,534.32 9,268.65 1,905.73 4,359.93 12 3,101.47 1,849.22 379.83 872.42 13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70	10						3,092.45	1,847.17		
13 15,514.25 9,242.60 1,906.88 4,364.77 13 3,107.98 1,857.03 378.03 872.92 14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70										
14 15,467.68 9,214.32 1,904.87 4,348.50 14 3,100.50 1,850.78 384.02 865.70										
	13									
Average 15,503.48 9,243.42 1,904.22 4,355.84 Average 3,100.30 1,849.81 380.74 869.75										
	Average	15,503.48	9,243.42	1,904.22	4,355.84	Average	3,100.30	1,849.81	380.74	869.75

Submitted for Review: MARCH 18, 2008

Response Time Ramp Distribution (IOPS) Graph



Submitted for Review: MARCH 18, 2008

SPC-1 LRT™ Average Response Time (ms) Distribution Data

62 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	10:26:57	10:31:58	0-4	0:05:01
Measurement Interval	10:31:58	10:41:58	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	3.19	4.19	4.39	0.55
1	3.01	3.98	4.03	0.48
2	2.91	3.88	3.77	0.48
3	2.87	3.82	3.72	0.46
4	2.84	3.81	3.60	0.47
5	2.95	3.94	3.79	0.46
6	2.83	3.74	3.74	0.48
7	2.80	3.74	3.62	0.46
8	2.78	3.68	3.66	0.48
9	2.87	3.83	3.78	0.46
10	2.87	3.82	3.76	0.47
11	2.86	3.81	3.76	0.47
12	2.82	3.75	3.63	0.48
13	2.83	3.77	3.68	0.48
14	3.02	4.00	4.03	0.47
Average	2.86	3.81	3.75	0.47

SPC-1 LRT™ Average Response Time (ms) Distribution Graph

SPC-1 LRT™ (10%) - Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.0 and 5.3.13.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.13.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0351	0.2814	0.0700	0.2102	0.0179	0.0699	0.0350	0.2805
COV	0.013	0.004	0.008	0.005	0.020	0.008	0.008	0.004

Submitted for Review: MARCH 18, 2008

Repeatability Test

Clause 5.4.5

The Repeatability Test demonstrates the repeatability and reproducibility of the SPC-1 IOPSTM primary metric and SPC-1 LRTTM metric generated in earlier Test Runs.

There are two identical Repeatability Test Phases. Each Test Phase contains two Test Runs. Each of the Test Runs will have a Measurement Interval of no less than ten (10) minutes. The two Test Runs in each Test Phase will be executed without interruption or any type of manual intervention.

The first Test Run in each Test Phase is executed at the 10% load point. The Average Response Time from each of the Test Runs is compared to the SPC-1 LRTTM metric. Each Average Response Time value must be less than the SPC-1 LRTTM metric plus 5%.

The second Test Run in each Test Phase is executed at the 100% load point. The I/O Request Throughput from the Test Runs is compared to the SPC-1 IOPSTM primary metric. Each I/O Request Throughput value must be greater than the SPC-1 IOPSTM primary metric minus 5%. In addition, the Average Response Time for each Test Run cannot exceed 30 milliseconds.

If any of the above constraints are not met, the benchmark measurement is invalid.

Clause 9.2.4.7.4

The following content shall appear in the FDR for each Test Run in the two Repeatability Test Phases:

- 1. A table containing the results of the Repeatability Test.
- 2. An I/O Request Throughput Distribution graph and table.
- 3. An Average Response Time Distribution graph and table.
- 4. The human readable Test Run Results File produced by the Workload Generator.
- 5. A listing or screen image of all input parameters supplied to the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in "Appendix E: SPC-1 Workload Generator Input Parameters" on Page 67.

Submitted for Review: MARCH 18, 2008

Repeatability Test Results File

The values for the SPC-1 IOPS $^{\text{\tiny TM}}$, SPC-1 LRT $^{\text{\tiny TM}}$, and the Repeatability Test measurements are listed below.

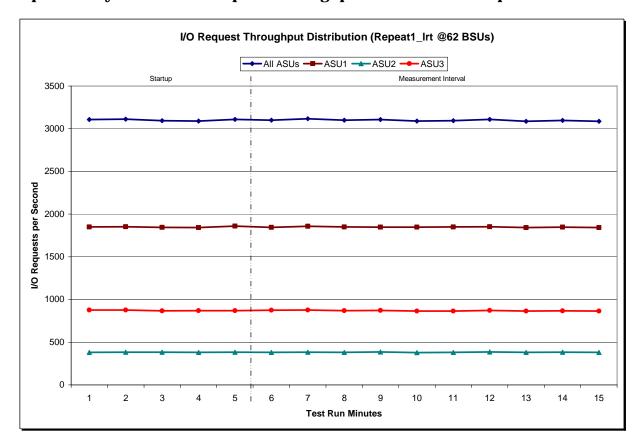
	SPC-1 IOPS™	SPC-1 LRT™
Primary Metrics	30,992.39	2.86
Repeatability Test Phase 1	30,994.86	2.88
Repeatability Test Phase 2	30,992.36	2.86

A link to the test result file generated from each Repeatability Test Run list is listed below.

Repeatability Test Phase 1, Test Run 1 (LRT)

Repeatability Test Phase 1, Test Run 2 (IOPS)

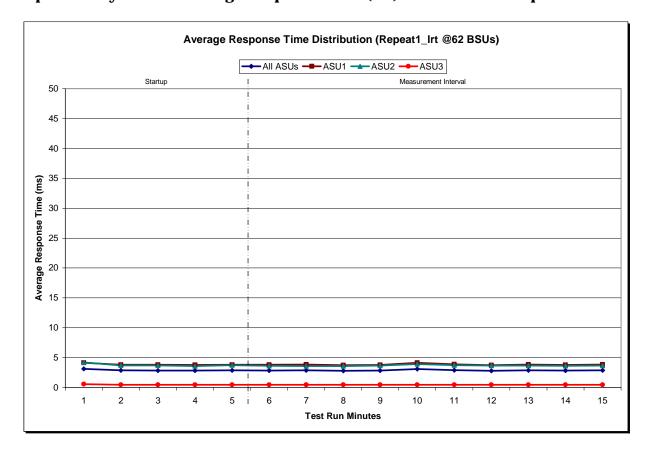
Repeatability Test Phase 2, Test Run 1 (LRT)


Repeatability Test Phase 2, Test Run 2 (IOPS)

Submitted for Review: MARCH 18, 2008

Repeatability 1 LRT - I/O Request Throughput Distribution Data

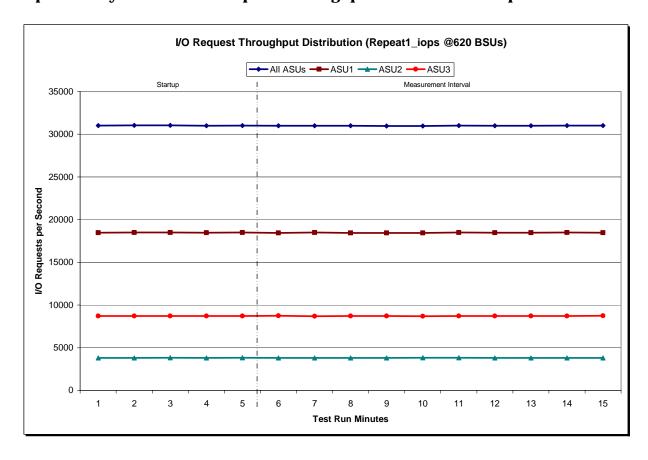
62 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	10:42:04	10:47:04	0-4	0:05:00
Measurement Interval	10:47:04	10:57:04	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	3,105.87	1,849.63	380.42	875.82
1	3,111.10	1,851.28	382.20	877.62
2	3,094.20	1,844.78	381.82	867.60
3	3,089.75	1,840.93	380.47	868.35
4	3,110.57	1,859.50	382.33	868.73
5	3,100.32	1,844.58	380.18	875.55
6	3,118.25	1,856.87	383.92	877.47
7	3,100.57	1,850.77	380.00	869.80
8	3,106.03	1,847.25	385.93	872.85
9	3,089.33	1,846.67	377.33	865.33
10	3,093.37	1,849.42	380.22	863.73
11	3,108.55	1,852.52	385.00	871.03
12	3,085.57	1,842.82	379.28	863.47
13	3,096.85	1,847.92	382.73	866.20
14	3,087.25	1,841.77	381.48	864.00
Average	3,098.61	1,848.06	381.61	868.94


Repeatability 1 LRT - I/O Request Throughput Distribution Graph

Repeatability 1 LRT -Average Response Time (ms) Distribution Data

62 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	10:42:04	10:47:04	0-4	0:05:00
Measurement Interval	10:47:04	10:57:04	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	3.13	4.12	4.20	0.58
1	2.86	3.83	3.72	0.45
2	2.86	3.82	3.69	0.46
3	2.83	3.80	3.59	0.46
4	2.87	3.82	3.74	0.47
5	2.86	3.82	3.64	0.47
6	2.87	3.86	3.61	0.47
7	2.81	3.74	3.59	0.47
8	2.84	3.80	3.66	0.46
9	3.09	4.14	3.93	0.48
10	2.92	3.90	3.73	0.47
11	2.82	3.75	3.68	0.47
12	2.88	3.84	3.67	0.48
13	2.83	3.77	3.63	0.48
14	2.90	3.87	3.68	0.47
Average	2.88	3.85	3.68	0.47

Repeatability 1 LRT -Average Response Time (ms) Distribution Graph

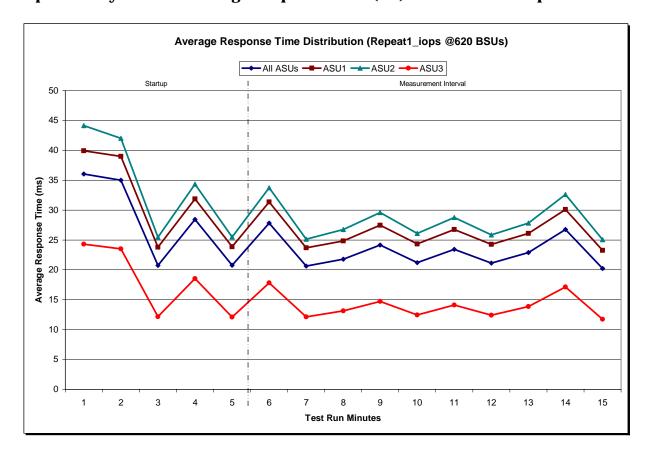


Submitted for Review: MARCH 18, 2008

Repeatability 1 IOPS - I/O Request Throughput Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	10:57:08	11:02:09	0-4	0:05:01
Measurement Interval	11:02:09	11:12:09	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	31,011.83	18,476.82	3,805.53	8,729.48
1	31,032.45	18,506.12	3,813.07	8,713.27
2	31,046.30	18,498.52	3,820.58	8,727.20
3	30,991.70	18,463.93	3,814.25	8,713.52
4	31,028.80	18,482.80	3,824.67	8,721.33
5	30,982.68	18,436.35	3,813.75	8,732.58
6	30,985.03	18,488.02	3,807.80	8,689.22
7	30,984.43	18,451.93	3,812.23	8,720.27
8	30,962.15	18,446.28	3,803.82	8,712.05
9	30,974.12	18,454.63	3,818.93	8,700.55
10	31,028.05	18,489.32	3,819.45	8,719.28
11	30,998.72	18,473.50	3,812.17	8,713.05
12	30,998.13	18,476.62	3,815.25	8,706.27
13	31,015.98	18,487.68	3,802.33	8,725.97
14	31,019.25	18,469.80	3,813.32	8,736.13
Average	30,994.86	18,467.41	3,811.91	8,715.54

Repeatability 1 IOPS - I/O Request Throughput Distribution Graph

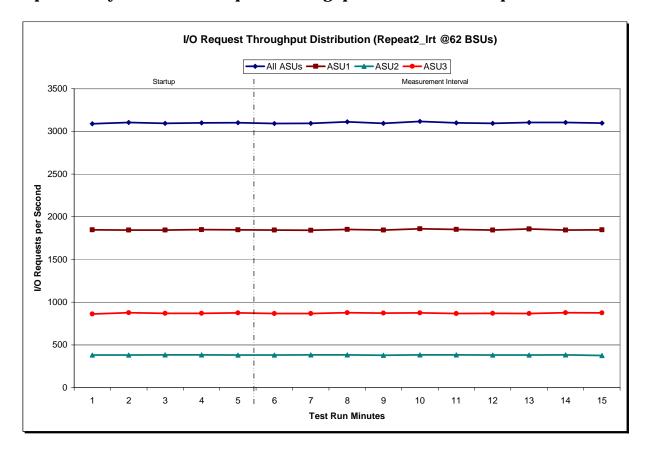


Submitted for Review: MARCH 18, 2008

Repeatability 1 IOPS -Average Response Time (ms) Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	10:57:08	11:02:09	0-4	0:05:01
Measurement Interval	11:02:09	11:12:09	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	36.04	39.91	44.15	24.30
1	35.00	38.97	42.02	23.50
2	20.72	23.78	25.44	12.16
3	28.42	31.86	34.34	18.55
4	20.77	23.88	25.50	12.10
5	27.83	31.37	33.71	17.80
6	20.62	23.68	25.14	12.13
7	21.77	24.83	26.73	13.12
8	24.14	27.47	29.59	14.71
9	21.21	24.32	26.09	12.47
10	23.44	26.74	28.75	14.09
11	21.13	24.26	25.85	12.43
12	22.88	26.10	27.84	13.86
13	26.76	30.10	32.60	17.12
14	20.22	23.24	25.05	11.73
Average	23.00	26.21	28.14	13.95

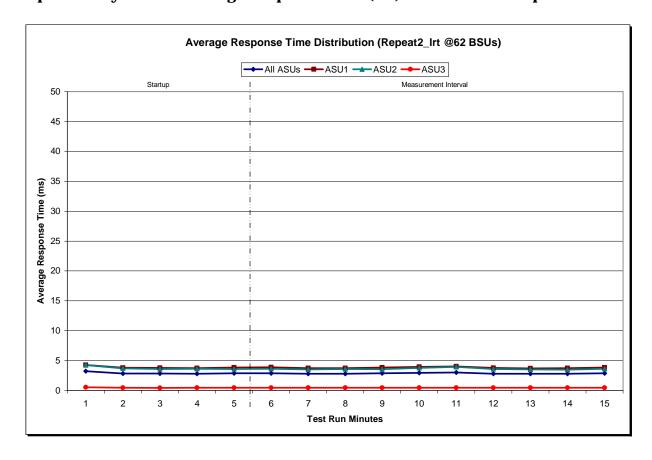
Repeatability 1 IOPS -Average Response Time (ms) Distribution Graph



Submitted for Review: MARCH 18, 2008

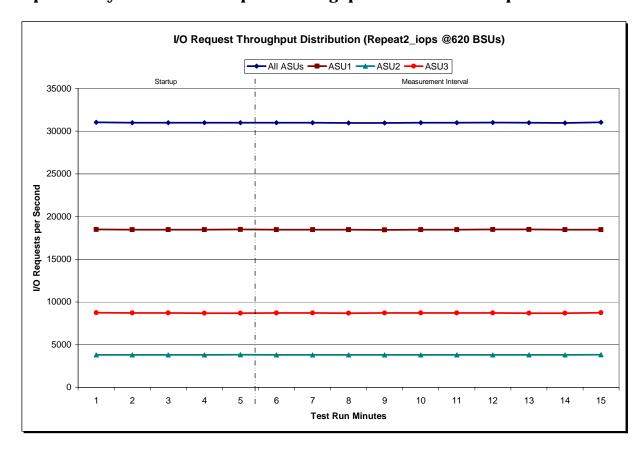
Repeatability 2 LRT - I/O Request Throughput Distribution Data

62 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	11:12:15	11:17:15	0-4	0:05:00
Measurement Interval	11:17:15	11:27:15	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	3,089.40	1,846.18	380.23	862.98
1	3,103.55	1,845.17	381.23	877.15
2	3,094.55	1,843.87	382.13	868.55
3	3,099.65	1,848.85	382.12	868.68
4	3,102.55	1,847.15	380.42	874.98
5	3,091.05	1,843.78	381.53	865.73
6	3,093.43	1,843.17	382.28	867.98
7	3,111.18	1,852.37	382.22	876.60
8	3,093.85	1,845.73	377.50	870.62
9	3,118.02	1,859.50	383.28	875.23
10	3,100.15	1,851.08	383.03	866.03
11	3,094.87	1,844.38	381.63	868.85
12	3,104.50	1,857.70	379.73	867.07
13	3,104.62	1,844.72	382.80	877.10
14	3,096.97	1,847.68	374.80	874.48
Average	3,100.86	1,849.01	380.88	870.97


Repeatability 2 LRT - I/O Request Throughput Distribution Graph

Repeatability 2 LRT -Average Response Time (ms) Distribution Data

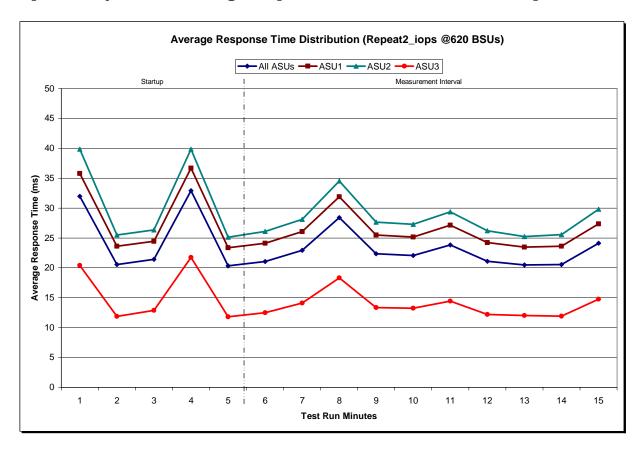
62 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	11:12:15	11:17:15	0-4	0:05:00
Measurement Interval	11:17:15	11:27:15	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	3.22	4.27	4.23	0.55
1	2.85	3.81	3.69	0.47
2	2.83	3.79	3.60	0.45
3	2.82	3.76	3.63	0.46
4	2.87	3.85	3.59	0.47
5	2.89	3.88	3.63	0.47
6	2.80	3.76	3.52	0.46
7	2.80	3.74	3.59	0.48
8	2.87	3.86	3.57	0.48
9	2.97	3.97	3.80	0.46
10	3.03	4.03	3.95	0.48
11	2.82	3.77	3.60	0.45
12	2.79	3.72	3.54	0.46
13	2.79	3.75	3.51	0.46
14	2.87	3.85	3.64	0.48
Average	2.86	3.83	3.63	0.47


Repeatability 2 LRT -Average Response Time (ms) Distribution Graph

Repeatability 2 IOPS - I/O Request Throughput Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	11:27:19	11:32:20	0-4	0:05:01
Measurement Interval	11:32:20	11:42:20	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	31,050.83	18,486.73	3,813.97	8,750.13
1	31,000.93	18,477.75	3,810.55	8,712.63
2	31,005.78	18,469.10	3,816.92	8,719.77
3	30,986.23	18,468.10	3,813.33	8,704.80
4	31,004.07	18,489.35	3,823.63	8,691.08
5	30,999.57	18,466.40	3,808.13	8,725.03
6	30,984.53	18,461.35	3,807.70	8,715.48
7	30,965.95	18,471.88	3,804.60	8,689.47
8	30,979.08	18,446.95	3,814.33	8,717.80
9	30,994.23	18,463.50	3,809.43	8,721.30
10	30,991.22	18,472.50	3,798.17	8,720.55
11	31,010.80	18,483.50	3,814.52	8,712.78
12	30,987.83	18,483.30	3,803.67	8,700.87
13	30,976.27	18,463.50	3,814.43	8,698.33
14	31,034.12	18,476.90	3,819.48	8,737.73
Average	30,992.36	18,468.98	3,809.45	8,713.94

Repeatability 2 IOPS - I/O Request Throughput Distribution Graph



Submitted for Review: MARCH 18, 2008

Repeatability 2 IOPS -Average Response Time (ms) Distribution Data

620 BSUs	Start	Stop	Interval	Duration
Start-Up/Ramp-Up	11:27:19	11:32:20	0-4	0:05:01
Measurement Interval	11:32:20	11:42:20	5-14	0:10:00
60 second intervals	All ASUs	ASU1	ASU2	ASU3
0	31.96	35.80	39.86	20.42
1	20.55	23.63	25.49	11.86
2	21.42	24.44	26.35	12.87
3	32.88	36.69	39.84	21.76
4	20.34	23.36	25.13	11.80
5	21.07	24.10	26.09	12.47
6	22.94	26.05	28.10	14.10
7	28.41	31.89	34.53	18.33
8	22.34	25.49	27.64	13.34
9	22.07	25.17	27.28	13.23
10	23.83	27.13	29.38	14.44
11	21.10	24.24	26.20	12.22
12	20.47	23.47	25.23	12.02
13	20.57	23.61	25.56	11.91
14	24.11	27.36	29.79	14.75
Average	22.69	25.85	27.98	13.68

Repeatability 2 IOPS -Average Response Time (ms) Distribution Graph

Repeatability 1 (LRT) Measured Intensity Multiplier and Coefficient of Variation

Clause 3.4.3

IM – Intensity Multiplier: The ratio of I/Os for each I/O stream relative to the total I/Os for all I/O streams (ASU1-1 – ASU3-1) as required by the benchmark specification.

Clauses 5.1.0 and 5.3.13.2

MIM – Measured Intensity Multiplier: The Measured Intensity Multiplier represents the ratio of measured I/Os for each I/O stream relative to the total I/Os measured for all I/O streams (ASU1-1 – ASU3-1). This value may differ from the corresponding Expected Intensity Multiplier by no more than 5%.

Clause 5.3.13.3

COV - Coefficient of Variation: This measure of variation for the Measured Intensity Multiplier cannot exceed 0.2.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0351	0.2815	0.0701	0.2097	0.0178	0.0703	0.0351	0.2804
COV	0.010	0.004	0.006	0.005	0.022	0.005	0.009	0.003

Repeatability 1 (IOPS) Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2808	0.0700	0.2101	0.0180	0.0701	0.0350	0.2812
COV	0.005	0.001	0.003	0.002	0.004	0.003	0.003	0.001

Repeatability 2 (LRT) Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0351	0.2811	0.0702	0.2098	0.0179	0.0698	0.0351	0.2809
COV	0.011	0.003	0.014	0.003	0.018	0.007	0.017	0.004

Submitted for Review: MARCH 18, 2008

Repeatability 2 (IOPS) Measured Intensity Multiplier and Coefficient of Variation

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
IM	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
MIM	0.0350	0.2809	0.0699	0.2101	0.0180	0.0699	0.0350	0.2812
COV	0.004	0.001	0.003	0.001	0.004	0.002	0.004	0.001

Data Persistence Test

Clause 6

The Data Persistence Test demonstrates the Tested Storage Configuration (TSC):

- Is capable of maintain data integrity across a power cycle.
- Ensures the transfer of data between Logical Volumes and host systems occurs without corruption or loss.

The SPC-1 Workload Generator will write 16 block I/O requests at random over the total Addressable Storage Capacity of the TSC for ten (10) minutes at a minimum of 25% of the load used to generate the SPC-1 IOP^{TM} primary metric. The bit pattern selected to be written to each block as well as the address of the block will be retained in a log file.

The Benchmark Configuration will be shutdown and restarted using a power off/power on cycle at the end of the above sequence of write operations. In addition, any caches employing battery backup must be flushed/emptied.

The SPC-1 Workload Generator will then use the above log file to verify each block written contains the correct bit pattern.

Clause 9.2.4.8

The following content shall appear in this section of the FDR:

- 1. A listing or screen image of all input parameters supplied to the Workload Generator.
- 2. For the successful Data Persistence Test Run, a table illustrating key results. The content, appearance, and format of this table are specified in Table 9-12. Information displayed in this table shall be obtained from the Test Run Results File referenced below in #3.
- 3. For the successful Data Persistence Test Run, the human readable Test Run Results File produced by the Workload Generator.

SPC-1 Workload Generator Input Parameters

The SPC-1 Workload Generator input parameters for the Sustainability, IOPS, Response Time Ramp, Repeatability, and Persistence Test Runs are documented in "Appendix E: SPC-1 Workload Generator Input Parameters" on Page 67.

Data Persistence Test Results File

A link to each test result file generated from each Data Persistence Test is listed below.

Persistence 1 Test Results File
Persistence 2 Test Results File

Data Persistence Test Results

Data Persistence Test Results						
Data Persistence Test Run Number: 1						
Total Number of Logical Blocks Written	74,307,024					
Total Number of Logical Blocks Verified	39,139,120					
Total Number of Logical Blocks that Failed Verification	0					
Time Duration for Writing Test Logical Blocks	10 minutes					
Size in Bytes of each Logical Block	512					
Number of Failed I/O Requests in the process of the Test	0					

In some cases the same address was the target of multiple writes, which resulted in more Logical Blocks Written than Logical Blocks Verified. In the case of multiple writes to the same address, the pattern written and verified must be associated with the last write to that address.

PRICED STORAGE CONFIGURATION AVAILABILITY DATE

Clause 9.2.4.9

The committed delivery data for general availability (Availability Date) of all products that comprise the Priced Storage Configuration must be reported. When the Priced Storage Configuration includes products or components with different availability dates, the reported Availability Date must be the date at which all components are committed to be available.

The FDR shall state: "The Priced Storage Configuration, as documented in this Full Disclosure Report will be available for shipment to customers on MMMM DD, YYYY." Where Priced Storage Configuration is the TSC Configuration Name as described in Clause 9.2.4.3.3 and MMMM is the alphanumeric month, DD is the numeric day, and YYYY is the numeric year of the date that the Priced Storage Configuration, as documented, is available for shipment to customers as described above.

The NetApp FAS3040 (48-hour Sustainability Test) as documented in this Full Disclosure Report will become available for customer purchase and shipment on March 18, 2008.

PRICING INFORMATION

Clause 9.2.4.11

A statement of the respective calculations for pricing must be included.

Clause 9.2.4.11.3

A list of all differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration must be included.

Pricing information may found in the Tested Storage Configuration Pricing section on page 13. A list of all differences between the Tested Storage Configuration (TSC) and Priced Storage Configuration may be found in the Executive Summary portion of this document on page 13.

Anomalies or Irregularities

Clause 9.2.4.10

The FDR shall include a clear and complete description of any anomalies or irregularities encountered in the course of executing the SPC-1 benchmark that may in any way call into question the accuracy, verifiability, or authenticity of information published in this FDR.

There were no anomalies or irregularities encountered during the SPC-1 Remote Audit of the NetApp FAS3040 (48-hour Sustainability Test).

APPENDIX A: SPC-1 GLOSSARY

"Decimal" (powers of ten) Measurement Units

In the storage industry, the terms "kilo", "mega", "giga", "tera", "peta", and "exa" are commonly used prefixes for computing performance and capacity. For the purposes of the SPC workload definitions, all of the following terms are defined in "powers of ten" measurement units.

- A kilobyte (KB) is equal to 1,000 (103) bytes.
- A megabyte (MB) is equal to 1,000,000 (106) bytes.
- A gigabyte (GB) is equal to 1,000,000,000 (109) bytes.
- A terabyte (TB) is equal to 1,000,000,000,000 (1012) bytes.
- A petabyte (PB) is equal to 1,000,000,000,000,000 (1015) bytes
- An exabyte (EB) is equal to 1,000,000,000,000,000,000 (1018) bytes

"Binary" (powers of two) Measurement Units

The sizes reported by many operating system components use "powers of two" measurement units rather than "power of ten" units. The following standardized definitions and terms are also valid and may be used in this document.

- A kibibyte (KiB) is equal to 1,024 (210) bytes.
- A mebibyte (MiB) is equal to 1,048,576 (2²⁰) bytes.
- A gigibyte (GiB) is equal to 1,073,741,824 (2³⁰) bytes.
- A tebibyte (TiB) is equal to 1,099,511,627,776 (240) bytes.
- A pebibyte (PiB) is equal to 1,125,899,906,842,624 (2⁵⁰) bytes.
- An exbibyte (EiB) is equal to 1,152,921,504,606,846,967 (260) bytes.

SPC-1 Data Repository Definitions

Total ASU Capacity: The total storage capacity read and written in the course of executing the SPC-1 benchmark.

Application Storage Unit (ASU): The logical interface between the storage and SPC-1 Workload Generator. The three ASUs (Data, User, and Log) are typically implemented on one or more Logical Volume.

Logical Volume: The division of Addressable Storage Capacity into individually addressable logical units of storage used in the SPC-1 benchmark. Each Logical Volume is implemented as a single, contiguous address space.

Addressable Storage Capacity: The total storage (sum of Logical Volumes) that can be read and written by application programs such as the SPC-1 Workload Generator.

Configured Storage Capacity: This capacity includes the Addressable Storage Capacity and any other storage (parity disks, hot spares, etc.) necessary to implement the Addressable Storage Capacity.

Physical Storage Capacity: The formatted capacity of all storage devices physically present in the Tested Storage Configuration (TSC).

Data Protection Overhead: The storage capacity required to implement the selected level of data protection.

Required Storage: The amount of Configured Storage Capacity required to implement the Addressable Storage Configuration, excluding the storage required for the three ASUs.

Global Storage Overhead: The amount of Physical Storage Capacity that is required for storage subsystem use and unavailable for use by application programs.

Total Unused Storage: The amount of storage capacity available for use by application programs but not included in the Total ASU Capacity.

SPC-1 Data Protection Levels

RAID5: User data is distributed across the disks in the array. Check data corresponding to user data is distributed across multiple disks in the form of bit-by-bit parity.

Mirroring: Two or more identical copies of user data are maintained on separate disks.

Other Protection Level: Any data protection other than RAID5 or Mirroring.

Unprotected: There is no data protection provided.

SPC-1 Test Execution Definitions

Average Response Time: The sum of the Response Times for all Measured I/O Requests divided by the total number of Measured I/O Requests.

Completed I/O Request: An I/O Request with a Start Time and a Completion Time (see "I/O Completion Types" below).

Completion Time: The time recorded by the Workload Generator when an I/O Request is satisfied by the TSC as signaled by System Software.

Data Rate: The data transferred in all Measured I/O Requests in an SPC-1 Test Run divided by the length of the Test Run in seconds.

Expected I/O Count: For any given I/O Stream and Test Phase, the product of 50 times the BSU level, the duration of the Test Phase in seconds, and the Intensity Multiplier for that I/O Stream.

Failed I/O Request: Any I/O Request issued by the Workload Generator that could not be completed or was signaled as failed by System Software. A Failed I/O Request has no Completion Time (see "I/O Completion Types" below).

I/O Request Throughput: The total number of Measured I/O requests in an SPC-1 Test Run divided by the duration of the Measurement Interval in seconds.

In-Flight I/O Request: An I/O Request issued by the I/O Command Generator to the TSC that has a recorded Start Time, but does not complete within the Measurement Interval (see "I/O Completion Types" below).

Measured I/O Request: A Completed I/O Request with a Completion Time occurring within the Measurement Interval (see "I/O Completion Types" below).

Measured Intensity Multiplier: The percentage of all Measured I/O Requests that were issued by a given I/O Stream.

Measurement Interval: The finite and contiguous time period, after the TSC has reached Steady State, when data is collected by a Test Sponsor to generate an SPC-1 test result or support an SPC-1 test result.

Ramp-Up: The time required for the Benchmark Configuration (BC) to produce Steady State throughput after the Workload Generator begins submitting I/O Requests to the TSC for execution.

Ramp-Down: The time required for the BC to complete all I/O Requests issued by the Workload Generator. The Ramp-Down period begins when the Workload Generator ceases to issue new I/O Requests to the TSC.

Response Time: The Response Time of a Measured I/O Request is its Completion Time minus its Start Time.

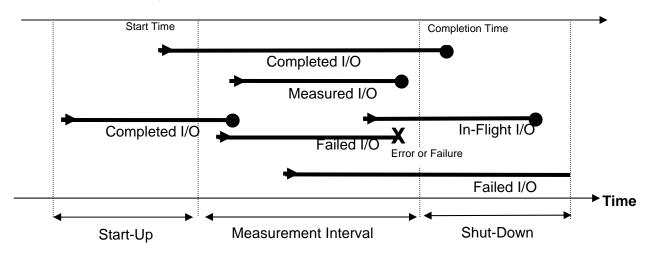
Start Time: The time recorded by the Workload Generator when an I/O Request is submitted, by the Workload Generator, to the System Software for execution on the Tested Storage Configuration (TSC).

Start-Up: The period that begins after the Workload Generator starts to submit I/O requests to the TSC and ends at the beginning of the Measurement Interval.

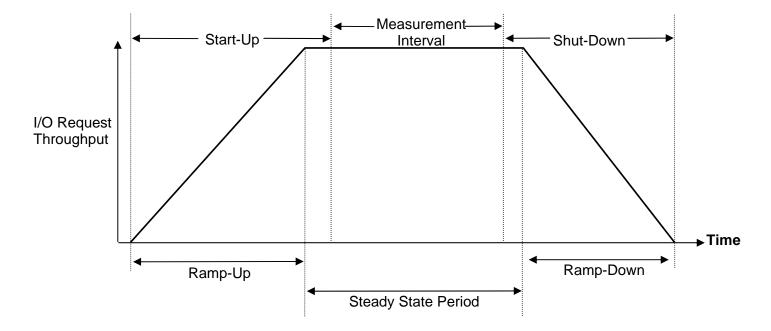
Shut-Down: The period between the end of the Measurement Interval and the time when all I/O Requests issued by the Workload Generator have completed or failed.

Steady State: The consistent and sustainable throughput of the TSC. During this period the load presented to the TSC by the Workload Generator is constant.

Test: A collection of Test Phases and or Test Runs sharing a common objective.


Test Run: The execution of SPC-1 for the purpose of producing or supporting an SPC-1 test result. SPC-1 Test Runs may have a finite and measured Ramp-Up period, Start-Up

Submitted for Review: MARCH 18, 2008


period, Shut-Down period, and Ramp-Down period as illustrated in the "SPC-1 Test Run Components" below. All SPC-1 Test Runs shall have a Steady State period and a Measurement Interval.

Test Phase: A collection of one or more SPC-1 Test Runs sharing a common objective and intended to be run in a specific sequence.

I/O Completion Types

SPC-1 Test Run Components

APPENDIX B: CUSTOMER TUNABLE PARAMETERS AND OPTIONS

Windows 2003 Server

For each HBA in the system, change the execution throttle (queue depth) from the default value of 16 to 256.

FAS3040 Storage Controllers

The following changes must be made on each controller:

- LUN options: Create the LUNs without space reservations. By default, the "lun create" command creates LUNs with space reservations. Instead of reserving space for the LUNs, the LUN create script pre-allocates space for all of the LUNs by overwriting every block of each LUN (see Appendix C), as required by the SPC-1 specification.
- Volume Options (applied to vol0, the ONTAP root volume):
 - o Resize the volume from its default size of 100 GB to 30 GB.
 - o Change the volume option "nosnap" from its default value of "off" to "on". This disables the automatic creation of Snapshot copies.
- Volume Options (applied to vol1, the SPC data set volume):
 - Create the volumes with a space reservation requirement of "none" rather than
 the default value of "volume". Because all of the LUNs in the volume are preallocated there is no need to reserve space in the volume.
 - o Change the volume option "nosnap" from its default value of "off" to "on". This disables the automatic creation of Snapshot™ copies.
- Aggregate Options (applied to aggr0, the only aggregate in the system)
 - Change the aggregate Snapshot reserve to 0 bytes.
 - o Change the aggregate option "nosnap" from its default value of "off" to "on".

These changes disable automatic Snapshot copies at the aggregate level.

- System Flags:
 - wafl_optimize_write_once: change default value of 1 to 0. This flag affects the initial layout of data within a newly created aggregate. The default data layout favors applications which do not overwrite their data.
 - wafl_downgrade_target: change default value of 1 to 0. This flag changes the runtime priority of the process that handles the SCSI protocol for incoming Fibre-Channel requests. For storage systems that are not also servicing NAS requests this change to the process priority is recommended.

APPENDIX C: TESTED STORAGE CONFIGURATION (TSC) CREATION

Host System

- Install Microsoft Windows Server 2003 Service Pack 2.
- Install and setup two Qlogic 2462 HBAs using NetApp certified Qlogic driver.
- Install NetApp's FCP Windows® Host Utilities 3.0 for Native OS
- Install Qlogic SANsurfer HBA management software.
- Install Data ONTAP DSM 3.2 for Windows MPIO and set it up to use round robin load balancing policy.
- Set the "Execution Throttle" (also known as HBA queue depth) setting on each FCP port from default of 16 to 256 using SANsurfer HBA management software.

Brocade FCP Switches

Connect the physical connections from the Host System to the FAS3040 as illustrated on page 14 (Benchmark Configuration/Tested Storage Configuration Diagram).

Storage Controllers

The following sections document how to set up the storage controllers and create the raid-groups, aggregates, volumes and LUNs that comprise the SPC-1 data repository.

Initializing Disk Ownership

The NetApp FAS3040 system consists of two storage controllers. Before the systems are installed the ownership of the individual disks must be established in the following fashion:

- Each controller should be setup with 3 active and 3 passive FCAL connections to the disk shelves
- Each controller should be setup with 5 active shelves (total 10 disk shelves between the two controllers). Each controller should own all disks in its 5 active shelves.

After the FCAL connections to disk shelves and disk ownership has been established, zero (initialize) all disks by executing the following steps on each NetApp controller:

- 1. Boot the NetApp controllers either by power cycling or typing "boot" at the "LOADER>" prompt on the console screen
- 2. Hit "CTRL C" during the boot process when prompted for the special boot menu on the console screen
- 3. Once at special boot menu, select option "4a" to zero (initialize) all disks and install a flexible root volume
- 4. After zeroing (initialization) of all disks are completed, follow the remaining prompts to complete the basic setup of NetApp controller.

APPENDIX C: Page 58 of 69

After zeroing (initialization) of all disks and basic setup is completed, install NetApp Data ONTAP 7.3 by executing the following steps:

- 1. Download Data ONTAP 7.3 system files for FAS3040 platform from NetApp's NOW site to a directory location that can be accessed via an http URL.
- 3. Once the installation of system files is completed, type "download" at the command prompt of NetApp controllers
- 4. Once "download" command completes, reboot the NetApp controller for changes to take effect.

Installing Licenses

The following licenses must be installed after NetApp ONTAP 7.3 system software installation has completed:

- cluster
- fcp

To install the licenses, execute the following command at NetApp controller's command prompt:

license add <license key>

Base Setup Script - FAS3040 Controllers

Once licenses are installed and both FAS3040 controllers rebooted, the perl script below should be run from the Host System to setup both FAS3040 controllers with appropriate storage sizes for SPC-1 ASUs. The script is invoked using the following syntax:

ntap_spc1_cfg.pl -f controller_a,controller_b -i wwpn_1,wwpn_2,wwpn_3,wwpn_4 -t timehost_ip_addr

The script does the following on each FAS3040 controller:

- modify /etc/rc file with the following setflags so these are persistent across reboots:
 - o setflag wafl_optimize_write_once 0
 - setflag wafl_downgrade_target 0
- set timezone to EST5EDT
- sets the following setflags to appropriate settings:
 - o wafl optimize write once 0
 - wafl_downgrade_target 0
- create aggregate with the following configuration:
 - o aggr0 settings, 4 rgs, rg sizes (1x18 + 3x17), 1 spare
 - o aggr0 options:
 - nosnap=on
 - set snap reserve = 0 on aggregate aggr0
 - set snap sched to 0 0 0 on the aggregate aggr0

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

- Configure the flexible volumes within aggregate with the following configuration:
 - Root flexible volume (vol0)
 - resize root volume to 30GB
 - set volume options on root volume vol0
 - nosnap=on
 - nosnapdir=off
 - set snap reserve = 0 on vol0
 - set snap sched to 0 0 0 on vol0
 - o spc1 data flexible volume (vol1):
 - create vol1 of size 8493820 MB
 - set volume options on vol1:
 - o nosnap=on
 - o nosnapdir=off
 - set snap reserve = 0 on vol1
 - set snap sched to 0 0 0 on vol1
 - set space reservation (guarantee) to "none"
- Create fcp portset to contain NetApp controller ports 0a and 0c. Then, create windows igroup
 which contains the wwpn of FCP HBAs initiators in the SPC-1 Windows driver system
- Create zeroed luns with no space reservation on each NetApp controller with the following sizes
 and then map them to the windows igroup created earlier assigning each lun a unique lun id.
 - o 6 lun files for ASU1 of size 450100 MB each
 - o 6 lun files for ASU2 of size 450100 MB each
 - o 6 lun files for ASU3 of size 100022 MB each
- Verify fcp is started on both NetApp controllers.

Host Disk Stripe Setup

Once the ASU LUNs are visible on the Windows host, execute the following steps to stripe the appropriate ASU LUNs together and assign a drive letter:

- In Windows disk management MMC, initialize each disk associated with the ASU luns.
- Convert each of the same disks to dynamic disks
- Create three striped volumes for ASU1, ASU2, and ASU3.
 - o Stripe each volume across all 12 luns associated with each respective ASU.
 - o Assign drive letter "E" for ASU1
 - o Assign drive letter "F" for ASU2
 - Assign drive letter "G" for ASU3

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

Submitted for Review: MARCH 18, 2008

ntap_spc1_cfg.pl

```
#!/usr/local/bin/perl
use Getopt::Std;
# ----- #
# Global Definition Section
# Set up some host-specific variables
$TEST=`VER 2>&1`;
$RSH="";
$TIME_CMD="";
$WINDOWS=0;
if ( $TEST eq "" ) {
    $RSH="/usr/bin/rsh -l root -n";
   $TIME_CMD="date";
} else {
   $WINDOWS=1;
    $RSH="rsh.exe";
    $TIME_CMD="time /T";
$INITIATOR_WWN_LIST="";
# controller-specific stuff
$LUN_TYPE = "windows";
$USE_WIN_RAW_DEVICES = 0;
$LUN_COUNT = 36;
$ASU1_2_LUN_SIZE = "450100m";
$ASU3 LUN SIZE = "100022m";
$IGROUP_TYPE = "windows";
$TIMEHOST="";
$AGGR_NAME="aggr0";
$TARGET_VOL="vol1";
@CONTROLLER_LIST=();
# Helper function definition section
sub usage {
   printf STDOUT "\
SPC-1 setup script for FAS3040 cluster:\
> %s [-h] [-r] -f controller_a,controller_b -t timehost_ip_addr [-i
wwn_1,wwn_2,...,wwn_n]\
 Options
                               Semantics\
   -h
                                 Display help menu and exit\
                                 Create setup for Windows raw devices\
   -r
                                 (default is to setup for Windows volume manager)
    -f controller_a,controller_b Comma-separated list of controller hostnames or
ip-addrs\
                                 to setup for SPC-1 test.\
                                 *NOTE* We split lun creation evenly between
controller_a\
                                 and controller_b, with controller_a getting the
odd numbered\
                                 lun names (but even numbered lun ids) and
controller_b\
```

```
getting the even numbered lun names and odd
number-\
                                 ed lun ids.\
   -i wwpn_1,wwpn_2,...,wwpn_n Comma-separated list of WWPNs of client-side\
                                 initiator ports.\
   -t timehost_ip_addr
                                IP address of the timehost to synchronize
controller times.
", $0;
# Print msg with timestamp to STDOUT
sub log_msg {
   my $msg = shift(@_);
   $timestamp = `$TIME_CMD`;
   chomp($timestamp);
   printf "%s -- %s\n", $timestamp, $msg;
# Small subroutine that sends an rsh command to $controller and returns the output
sub do_rsh($$) {
   my ($controller, $cmd) = @_;
   log_msg("Controller: ".$controller.": sending command \"priv set -q diag;
".$cmd."\"");
    if ($WINDOWS eq 1) {
       return(`$RSH $controller -l root "priv set -q diag; $cmd"`);
       return(`$RSH $controller "priv set -q diag; $cmd"`);
}
# ----- #
# Check options
getopts("rhf:i:t:");
if ($opt_h) {
   usage();
   exit 0;
if (!$opt_f) {
   printf STDERR "ERROR: Please provide comma-separated list of controller
hostnames or controller ip addresses!\n";
   usage();
   exit 1;
} else {
    sopt f = ~ s/s+//;
    @CONTROLLER_LIST = split(",", $opt_f);
if ($opt_r) {
    $USE_WIN_RAW_DEVICES = 1;
    $LUN_TYPE = "linux";
    $LUN_COUNT=100;
    $ASU1_2_LUN_SIZE="135030m";
    $ASU3_SIZE="60013m";
if (!$opt_t) {
   printf STDERR "ERROR: Please provide a timehost ip to synchronize the
controller clocks!\n";
   usage();
   exit 1;
} else {
    $TIMEHOST = $opt_t;
if (!$opt_i) {
```

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

NetApp, Inc.

Submitted for Review: MARCH 18, 2008

```
printf STDERR "ERROR: Please provide a comma-sperated list of host initiator
WWPNS!\n";
   usage();
   exit 1;
} else {
   $INITIATOR_WWN_LIST="";
    \phi_i =  s/\s+//;
   @wwn_list = split(",", $opt_i);
   foreach $wwn (@wwn_list) {
        $INITIATOR_WWN_LIST .= $wwn.' ';
      ______#
# Functions for setting / configuring ONTAP options
# Routine for setting the two flags -- NOTE: Simply using setflag does not
quarantee persistence across reboots
sub do_setflags {
   foreach $controller (@CONTROLLER_LIST) {
        do_rsh($controller, "setflag wafl_optimize_write_once 0");
        do_rsh($controller, "setflag wafl_downgrade_target 0");
# Routine for adding the 2 setflags and default gateway to each controller's rc
file so that they remain persistent across reboots
sub modify_rc_files {
    foreach $controller (@CONTROLLER_LIST) {
        do_rsh($controller, "wrfile -a /etc/rc \\\"priv set -q diag; setflag
wafl_optimize_write_once 0\\\"");
        do_rsh($controller, "wrfile -a /etc/rc \\\"priv set -q diag; setflag
wafl_downgrade_target 0\\\"");
# Set timezone and rdate to timehost
sub set_timezone {
   foreach $controller (@CONTROLLER_LIST) {
        do_rsh($controller, "timezone EST5EDT");
        do_rsh($controller, "rdate $TIMEHOST");
# Routine for creating an aggregate with:
# - snapshots disabled
# - no snap reserve
# - 4 raid_dp raid groups:
    - 1 x 18 disk raid group
    - 3 x 17 disk raid group
sub create_aggrs {
   foreach $controller (@CONTROLLER_LIST) {
        # Disable aggregate snapshots
        do_rsh($controller, "aggr options $AGGR_NAME nosnap on");
        do_rsh($controller, "snap sched -A $AGGR_NAME 0 0 0");
        # Turn off snap reserve in the aggregate
        do_rsh($controller, "snap reserve -A $AGGR_NAME 0");
        # Create the first raidgroup of size 18
        do_rsh($controller, "aggr options $AGGR_NAME raidsize 18");
do_rsh($controller, "aggr add $AGGR_NAME 15");
        sleep 30; # aggr add commands are async, so provide some sleep time
        # Now create the remaining 3 raid groups of size 17
        do_rsh($controller, "aggr options $AGGR_NAME raidsize 17");
        do_rsh($controller, "aggr add $AGGR_NAME 51");
        sleep 60; # aggr add commands are async, so provide some sleep time
}
```

SPC BENCHMARK 1TM V1.10.1

FULL DISCLOSURE REPORT

NetApp, Inc. NetApp FAS3040 (48-hour Sustainability Test)

```
# Set options on root volume
sub do_root_vol_options {
    foreach $controller (@CONTROLLER_LIST) {
        # Resize vol to 30g
        do_rsh($controller, "vol size vol0 30g");
        sleep 30;
        # Disable snapshots
        do_rsh($controller, "vol options vol0 nosnap on");
        do_rsh($controller, "snap sched vol0 0 0 0");
        # Turn off snap reserve
        do_rsh($controller, "snap reserve vol0 0");
        do_rsh($controller, "vol options vol0 nosnapdir off");
    }
# Create a target flexible volume with snapshots off and snap reserve 0 that is 84%
of the containing aggregate
sub create_target_vols {
    foreach $controller (@CONTROLLER_LIST) {
        # Create a flexvol in $AGGR_NAME that is roughly 82% of all free space in
the aggr
        do_rsh($controller, "vol create $TARGET_VOL -s none $AGGR_NAME 8493820m");
        sleep 60; # vol create commands are async, so provide some time
        # Disable snapshots in target volume
        do_rsh($controller, "vol options $TARGET_VOL nosnap on");
do_rsh($controller, "snap sched $TARGET_VOL 0 0 0");
do_rsh($controller, "vol options $TARGET_VOL nosnapdir off");
        do_rsh($controller, "snap reserve $TARGET_VOL 0");
# Setup FCP settings
sub setup_fcp {
    foreach $controller (@CONTROLLER_LIST) {
        do_rsh($controller, "cf enable");
        do_rsh($controller, "fcp start");
        # Set the cfmode to SSI
        do_rsh($controller, "fcp set cfmode -f single_image");
        # Configure targets
        do_rsh($controller, "fcp config 0a up");
        do_rsh($controller, "fcp config 0c up");
do_rsh($controller, "fcp stop");
    }
# Setup portsets
sub create_portsets {
    foreach $controller (@CONTROLLER LIST) {
        do_rsh($controller, "portset create -f portset1 0a 0c");
# Setup igroups
sub create_igroups {
    foreach $controller (@CONTROLLER_LIST) {
        do_rsh($controller, "igroup create -t $IGROUP_TYPE -a portset1 -f igroup1
$INITIATOR_WWN_LIST");
# Routine for writing out zeroed luns sequentially on one partner controller
sub do_controller_luns {
    my ($controller, $file_count, $starting_index) = @_;
    my $file_index = $starting_index;
    my $asu_num = 1;
    my $file_size = $ASU1_2_LUN_SIZE;
    do_rsh($controller, 'exportfs -i -o anon=0 /vol/$TARGET_VOL');
```

```
for ($i = 0; $i < $file_count; $i++) {</pre>
        # Check to see if it's time to switch to a new asu number
        if (($i == 20 && $LUN_COUNT == 100) || ($i == 6 && $LUN_COUNT == 36)) {
            asu_num = 2;
        } elsif (($i == 40 && $LUN_COUNT == 100) || ($i == 12 && $LUN_COUNT == 36))
{
            asu_num = 3;
            $file_size = $ASU3_LUN_SIZE;
        $file_name = 'file-'.$file_index;
        do_rsh($controller, "mkfile $file_size /vol/$TARGET_VOL/$file_name");
        $file_index+=2;
# This routine will fork off a child proc so that zeroed luns can be created in
parallel across both controllers
sub create_zeroed_luns {
   $pid = fork();
    if($pid == 0) {
        # Child proc -- Start odd-numbered lun creations on controller at index 0
        do_controller_lun(@CONTROLLER_LIST[0], $LUN_COUNT/2, 1);
        exit 0;
    } else {
        # Parent proc -- Start even-numbered lun creations on controller at index 1
        if (@CONTROLLER_LIST[1] ne "") {
            do_controller_luns(@CONTROLLER_LIST[1], $LUN_COUNT/2, 2);
        waitpid($pid,0);
    }
# Routine that creates luns and maps them to igroup1
sub create_and_map_luns {
   my $lun_id = 0;
   my $controller = "";
   my $asu_num = 1;
   my $file_index = 1;
   for ($i = 0; $i < $LUN_COUNT; $i++) {
        # Alternate lun creation..
        $controller = @CONTROLLER_LIST[$i%2];
        # Check to see if it's time to switch to a new asu number
        if (($file_index == 41 && $LUN_COUNT == 100) || ($file_index == 13 &&
$LUN_COUNT == 36)) {
            asu_num = 2;
        } elsif (($file_index == 81 && $LUN_COUNT == 100) || ($file_index == 25 &&
$LUN_COUNT == 36)) {
            asu_num = 3;
        }
        $lun_name='asu'.$asu_num.'_'.$file_index;
        $lun_path='/vol/$TARGET_VOL/'.$lun_name;
        $file_name='/vol/$TARGET_VOL/file-'.$file_index;
        do_rsh($controller, "lun create -t $LUN_TYPE -f $file_name -o noreserve
$lun_path");
        sleep 1;
        do_rsh($controller, "lun map $lun_path igroup1 $lun_id");
        sleep 1;
        $lun_id++;
        $file_index++;
```

SPC BENCHMARK 1^{TM} V1.10.1

FULL DISCLOSURE REPORT

NetApp, Inc. NetApp FAS3040 (48-hour Sustainability Test) APPENDIX C: Page 65 of 69
TESTED STORAGE CONFIGURATION (TSC) CREATION

```
# Routine for executing the final batch of commands before leaving setup
sub final_tasks {
   foreach $controller (@CONTROLLER_LIST) {
       # Make sure fcp service is running before leaving
       do_rsh($controller, "fcp start");
# ----- #
# Main execution entry point
# ----- #
log_msg("Starting setup on cluster: '".@CONTROLLER_LIST[0].",
".@CONTROLLER_LIST[1]."'");
modify_rc_files();
set_timezone();
do_setflags();
create_aggrs();
do_root_vol_options();
create_target_vols();
setup_fcp();
create_portsets();
create_igroups();
create_zeroed_luns();
create_and_map_luns();
final_tasks();
log_msg("Setup finished on cluster: '".@CONTROLLER_LIST[0].",
".@CONTROLLER_LIST[1]."'");
exit 0;
```

APPENDIX D: SPC-1 WORKLOAD GENERATOR STORAGE COMMANDS AND PARAMETERS

Submission Identifier: A00062

Submitted for Review: MARCH 18, 2008

APPENDIX D: SPC-1 WORKLOAD GENERATOR STORAGE COMMANDS AND PARAMETERS

The content of SPC-1 Workload Generator command and parameter file, used in this benchmark, is listed below.

APPENDIX E: SPC-1 WORKLOAD GENERATOR INPUT PARAMETERS

Primary Metrics Test, Repeatability Test, and Persistence Test Run 1

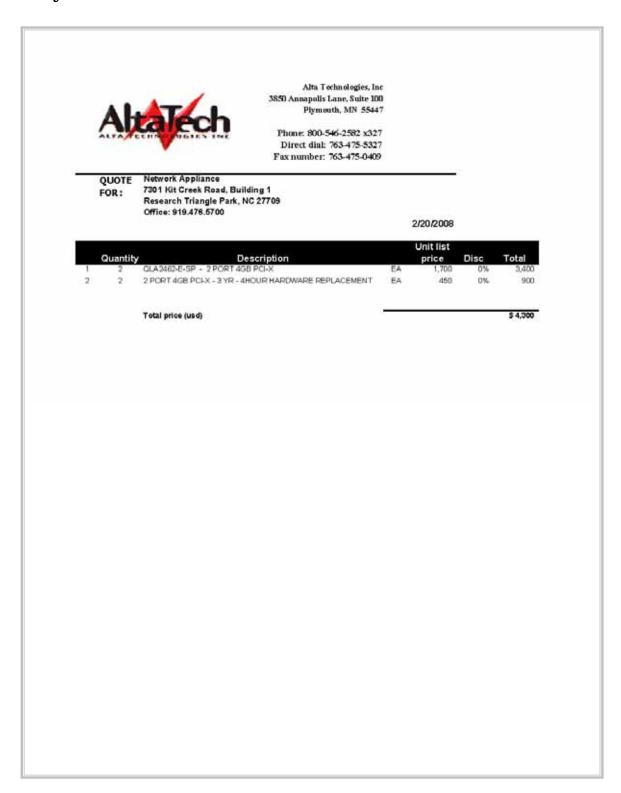
The following script was used to execute the Primary Metrics Test (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase), Repeatability Test (Repeatability Test Phase 1 and Repeatability Test Phase 2), and Persistence Test Run 1 in an uninterrupted sequence.

```
REM metrics test
metstrtime="%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~0,2%h%time:~3,2%m%
time:~6,2%s"
java -Xmx1024m -Xms512m -Xss256k metrics -b 620 -t 172800 -s 300
REM repeatability1 test
rep1strtime="%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~0,2%h%time:~3,2%m
%time:~6,2%s"
java -Xmx1024m -Xms512m -Xss256k repeat1 -b 620 -s 300
REM repeatability2 test
set
rep2strtime="%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~0,2%h%time:~3,2%m
%time:~6,2%s"
java -Xmx1024m -Xms512m -Xss256k repeat2 -b 620 -s 300
REM persistencel test
set
per1strtime="%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~0,2%h%time:~3,2%m
%time:~6,2%s"
java -Xmx1024m -Xms512m -Xss256k persist1 -b 620
c:\sleep.exe 30
REM move the results directories to appropriate locations
mkdir 620.nosnap.48hrs.full
c:\sleep.exe 30
move /Y metrics
620.nosnap.48hrs.full\metrics.620.nosnap.48hrs.full.%metstrtime%
c:\sleep.exe 30
move /Y repeatability1
620.nosnap.48hrs.full\repeat1.620.nosnap.48hrs.full.%rep1strtime%
c:\sleep.exe 30
move /Y repeatability2
620.nosnap.48hrs.full\repeat2.620.nosnap.48hrs.full.%rep2strtime%
c:\sleep.exe 30
move /Y persistence1
620.nosnap.48hrs.full\persist1.620.nosnap.48hrs.full.%per1strtime%
c:\sleep.exe 30
```

Submitted for Review: MARCH 18, 2008

Persistence Test Run 2

The following script was used to execute Persistence Test Run 2.


```
REM persistence2 test
set
per2strtime="%date:~4,2%_%date:~7,2%_%date:~10,4%_%time:~0,2%h%time:~3,2%m
%time:~6,2%s"
java -Xmx1024m -Xms512m -Xss256k persist2
c:\sleep.exe 30

REM move the results directories to appropriate locations
move /Y persistence2
620.nosnap.48hrs.full\persist2.620.nosnap.48hrs.full.%per2strtime%
c:\sleep.exe 30

move /Y SPCOut
620.nosnap.48hrs.full\SPCOut.620.nosnap.48hrs.full.%per2strtime%
c:\sleep.exe 30
```

APPENDIX F: THIRD-PARTY QUOTATIONS

Host System HBAs

