

SPC BENCHMARK 1^{TM}

FULL DISCLOSURE REPORT

HUARUI EXPON TECHNOLOGIES EXPONTECH WDS V3

SPC-1TM V3.10.0

SUBMISSION IDENTIFIER: A32027

SUBMITTED FOR REVIEW: SEPTEMBER 19, 2023

REVISED - SECOND EDITION: 2023-10-13

PREAMBLE Page 2 of 37

Second Edition - September 2023

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item has been reviewed by Huarui Expon Technologies for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in China. Huarui Expon Technologies may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local Huarui Expon Technologies representative for information on products and services available in your area.

© Copyright Huarui Expon Technologies 2023. All rights reserved.

Permission is hereby granted to publicly disclose and reproduce this document, in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark 1, SPC-1, SPC-1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks of the Storage Performance Council.

ExponTech and the ExponTech logo are trademarks or registered trademarks of Huarui Expon Technologies in China and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Benchmark Specification and Glossary

The official SPC Benchmark 1TM (SPC-1TM) specification is available on the website of the Storage Performance Council (SPC) at www.spcresults.org.

The SPC-1[™] specification contains a glossary of the SPC-1[™] terms used in this publication.

TABLE OF CONTENTS Page 3 of 37

Table of Contents

Audit Certification	4
Letter of Good Faith	6
Executive Summary	7
Pricing Details	
Differences Between Tested and Priced Storage Configurations	
Publication Details	
Contact Information	
Revision Information	
Anomalies, Exceptions, Waivers	
Configuration Information	
Tested Storage Product Description	
Host System and Tested Storage Configuration Components	
Configuration Diagrams	
Benchmark Configuration Creation Process	11
Space Optimization Information	12
Benchmark Execution Results	14
Benchmark Execution Overview	14
ASU Pre-Fill	15
SUSTAIN Test Phase	16
RAMPD_100 Test Phase	19
Response Time Ramp Test	22
Repeatability Test	24
Data Persistence Test	27
Appendix A: Supporting Files	28
Appendix B: Third Party Quotation	30
Appendix C: Tuning Parameters and Options	31
Appendix D: Storage Configuration Creation	32
Step 1: Create Storage Pools, USS and NVMe-oF	
Step 2: map LUNs as NVMe disks on host nodes	
Step 3: Create logical volumes, activate them on each host node	
Step 4: Change the Scheduler on each Host System	
Appendix E: Configuration Inventory	
Appendix F: Workload Generator	
1 1	

AUDIT CERTIFICATION Page 4 of 37

AUDIT CERTIFICATION

Zong Chao Huarui Expon Technologies No.4011, Section A, Zhongguan Times Plaza Liuxian Avenue, Taoyuan Street, Nanshan District Shenzhen, Guangong CHINA

October 13, 2023

I verified the SPC Benchmark 1^{TM} (SPC- 1^{TM} v3.10.0) test execution and performance results of the following Tested Storage Product:

ExponTech WDS V3

The results were:

SPC-1 IOPS™	27,201,325
SPC-1 Price-Performance	\$43.74/SPC-1 KIOPS™
SPC-1 Total System Price	\$1,189,577.99
SPC-1 IOPS Response Time	0.217 ms
SPC-1 Overall Response Time	0.144 ms
SPC-1 ASU Capacity	27,493 GB
SPC-1 ASU Price	\$43.27/GB

In my opinion, these performance results were produced in compliance with the SPC requirements for the benchmark.

The testing was executed using the SPC-1 Toolkit Version v3.0.2. The audit process was conducted in accordance with the SPC Policies and met the requirements for the benchmark.

A Letter of Good Faith was issued by Huarui Expon Technologies, stating the accuracy and completeness of the documentation and testing data provided in support of the audit of this result.

Page 1 of 2

Submission ID: A32027

Submitted: September 19, 2023

63 Lourdes Dr. | Leominster, MA 01453 | 978-343-6562 | www.sizing.com

AUDIT CERTIFICATION Page 5 of 37

A32027 ExponTech WDS V3 Page 2 of 2

A Full Disclosure Report for this result was prepared by InfoSizing, reviewed and approved by Huarui Expon Technologies, and can be found at www.spcresults.org under the Submission Identifier A32027.

The independent audit process conducted by InfoSizing included the verifications of the following items:

- The physical capacity of the data repository (76,816 GB).
- The total capacity of the Application Storage Unit (27,493 GB).
- · The accuracy of the Benchmark Configuration diagram.
- The tuning parameters used to configure the Benchmark Configuration.
- · The Workload Generator commands used to execute the testing.
- · The validity and integrity of the test result files.
- The compliance of the results from each performance test.
- The compliance of the results from each persistence test.
- · The compliance of the submitted pricing model.
- · The differences between the tested and the priced configuration, if any.

The Full Disclosure Report for this result was prepared in accordance with the disclosure requirements set forth in the specification for the benchmark.

The following benchmark requirements, if any, were waived in accordance with the SPC Policies:

None.

Additional Notes:

This result was originally audited on September 19, 2023, with pricing in CNY. The pricing has been re-audited for publication using USD instead.

Respectfully Yours,

Doug Johnson, Certified SPC Auditor

63 Lourdes Dr. | Leominster, MA 01453 | 978-343-6562 | www.sizing.com

LETTER OF GOOD FAITH

September 15,2023
To: Doug Johnson,SPC auditor perflabs,Inc. DBA InfoSizing 63 Lourdes Drive Leominster,MA 01453-6709 USA

Subject: SPC-1 Letter of Good Faith for the ExponTech WDS V3

Huarui Expon Technologies co., Ltd is the SPC-1 Test Sponsor for the above listed product. To the best of our knowledge and belief, the required SPC-1 benchmark results and materials we have submitted for that product are complete, accurate, and in full compliance with version 3.10 of the SPC-1 benchmark specification.

In addition, we have reported any items in the Benchmark Configuration and execution of the benchmark that affected the reported results even if the items are not explicitly required to be disclosed by the SPC-1 benchmark specification.

Sincerely,

GM of Storage Products Department Huarui Expon Technologies Co., Ltd

2023, 9, 15 Date: September 15,2023

SPC Benchmark 1™

Executive Summary

ExponTech WDS V3

SPC-1 IOPS™
SPC-1 IOPS Response Time
SPC-1 Overall Response Time

27,201,325 0.217 ms0.144 ms

SPC-1 Price Performance SPC-1 Total System Price SPC-1 Overall Discount \$43.74/SPC-1 KIOPS™ \$1,189,577.99 65.08%

Currency / Target Country

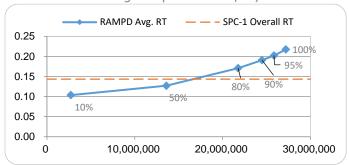
USD / China

Availability Date

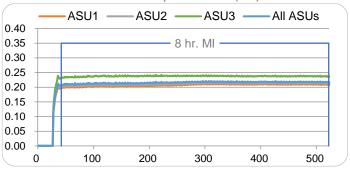
July 24, 2023

Extensions

$\stackrel{\wedge}{\sim}$	SPC-1 Data Reduction	NA
$\frac{1}{2}$	SPC-1 Encryption	NA
*	SPC-1 NDU	NA
*	SPC-1 Synchronous Replication	NA
$\frac{1}{2}$	SPC-1 Snapshot	NA
*	SPC-1 Synchronous Replication	NΑ

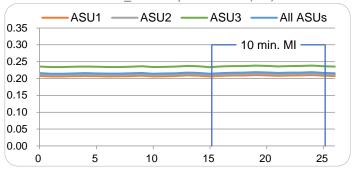

Storage Metrics

SPC-1 Data Protection Level	Protected 2
SPC-1 Physical Storage Capacity	76,816 GB
SPC-1 ASU Capacity	27,493 GB
SPC-1 ASU Price	\$43.27/GB


Priced Storage Configuration Summary

- 64 Mellanox CX624106AN-CDAT 100 Gb 2-port
- 1 ExponTech WDS V3
- 32 Storage Nodes
- 4,096 GB Total Cache
 - 64 100 Gbps Total Front-End Ports
 - 192 Total Storage Devices (400 GB NVMe)
 - 2 H3C 100 Gbps Ethernet Switches
 - 68 Total RUs

RAMPD Average Response Time (ms) vs. IOPS



SPC Benchmark 1™ Specification Revision
SPC Benchmark 1™ Workload Generator Revision

v3.10.0 v3.0.2

RAMPD_100 Response Time (ms)

Submitted for Review Revised – Second Edition Submission Details September 19, 2023 October 13, 2023 www.storageperformance.org/r/A32027

SPC-1, SPC-1 IOPS, SPC-1 KIOPS, SPC-1 Price Performance, SPC Benchmark 1, and the SPC Logo are trademarks of the Storage Performance Council.

PRICING DETAILS Page 8 of 37

PRICING DETAILS

Part No.	Description	Source	Qty	Unit Price	Ext. Price	Disc.	Disc. Price	
	Hardware & Software							
DST7250S	ExponTech WDS V3 Storage Node (2.5 inch *24) Case, Maximum expansion to 4096 Nodes in One System	1	32	5,698.63	182,356.16	65%	63,824.66	
7250C53Y	Intel Xeon Gold 5318Y (2.1GHZ/24 cores) Processor Unit	1	64	6,575.34	420,821.76	65%	147,287.62	
7250M32Y	Memory DDR4 RDIMM, 32GB 3200 MT/s	1	128	328.77	42,082.56	65%	14,728.90	
7250100G	Network Card PCIEX16 100Gb Dual-port	1	96	3,068.49	294,575.04	65%	103,101.27	
7250110C	Dapustor U.2 NVME SSD 400GB PCIe 4.0	1	192	3,835.62	736,439.04	65%	257,753.67	
7250187C	Enterprise SSD 480GB SATA 2.5inch	1	64	493.15	31,561.60	65%	11,046.56	
7250SSNS	ExponTech WDS V3 Basic Software, One Licese Matches One Node	1	32	32,876.71	1,052,054.72	65%	368,219.16	
725010SW	H3C Ethernet Network Switch bundle 8 units* 100G*128 ports	1	2	87,671.23	175,342.46	65%	61,369.87	
7250114G	10M 100G QSFP28 to QSFP28 AOC active optical cable	1	200	82.19	16,438.00	70%	4,931.40	
7250145G	Mellanox Optical Module SFP 100G MM	1	400	876.71	350,684.00	70%	105,205.20	
7250210G	Storage RACK 42U AC Cabinet	1	2	1,095.89	2,191.78	60%	876.72	
	Hardware & Software Subtotal						1,138,345.03	
	Support & Ma	aintenan	ce					
7250201S	Installation Service - Engineering	1	32	410.96	13,150.72	50%	6,575.36	
7250206U	Upgrade to Onsite Premier 24x7x4H Engineer Onsite Service - 36Month(s)	1	32	2,739.73	87,671.36	50%	43,835.68	
7250206S	Switch Bundle Installation Service Engineering	1	2	821.92	1,643.84	50%	821.92	
	Support & Maintenance Subtotal						51,232.96	
	SPC-1 Total System Price					1,189,577.99		
	SPC-1 IOPS™					27,201,325		
	SPC-1 Price-Performance™ (\$/SPC-1 KIOPS™)						43.74	
	SPC-1 ASU Capacity (GB)						27,493	
	SPC-1 ASU Price (\$/GB)					43.27		

Discount Details: The discounts shown are based on the storage capacity purchased and are generally available.

Warranty: The priced maintenance provides 7x24x4H arrival service within designated city and distance. The service includes 7x24 contact to the Expontech call center with 4-hours on-site hardware replacement or troubleshooting, and online software support with access to all new software updates or troubleshooting.]

Differences Between Tested and Priced Storage Configurations

There were no differences between the TSC and the Priced Storage Configuration.

PUBLICATION DETAILS Page 9 of 37

PUBLICATION DETAILS

This section provides contact information for the test sponsor and auditor, a revision history of this document, and a description of any exceptions or waivers associated with this publication.

Contact Information

Role	Name	Details
Test Sponsor Primary Contact	Huarui Expon Technologies Zong Chao	www.expontech.com zongchao@expontech.com
SPC Auditor	InfoSizing Doug Johnson	www.sizing.com doug@sizing.com

Revision Information

Date	FDR Revision	Details
September 19, 2023	First Edition	Initial Publication
October 13, 2023	Second Edition	Convert pricing from CNY to USD

Anomalies, Exceptions, Waivers

There were no anomalies, exceptions or waivers associated with the audit of the ExponTech WDS V3.

Submitted: September 19, 2023

CONFIGURATION INFORMATION

Tested Storage Product Description

Expontech WDS V3 is a fully self-developed software-defined, high-performance distributed enterprise-level block storage platform designed for large-scale core data processing applications. ExponTech WDS V3 adopts a decentralized distributed system architecture, enabling smooth horizontal expansion while maintaining linear scalability of performance and capacity with the number of nodes. The platform supports NVMe SSD, SATA SSD, and SCM drives as primary storage media and is compatible with both 25G/100G RDMA RoCEv2 and traditional 10G TCP/IP networking technologies. With its advantages of high performance, scalability, reliability, ease of management, and maintenance, ExponTech WDS V3 fully meets the storage and disaster recovery requirements of massive data in fields such as cloud computing, big data, virtualization, databases, and high-performance computing. It has been widely used in industries such as finance, healthcare, education, government, enterprise, telecommunications, and transportation.

Host System and Tested Storage Configuration Components

The following table lists the components of the Host System(s) and the TSC.

Host Systems

32x H3C UniServer R4900 G5 Servers, each with:

2x Intel Xeon Gold 5318Y 2.1 GHz 24-Core Processor

256 GB Main Memory

CentOS Linux release 7.9.2009

Tested Storage Configuration

#64x Mellanox CX623106AN-CDAT 100 Gbps 2-port HBAs

1x ExponTech WDS V3 with:

32x ExponTech ET-WDS storage node, each with:

128 GB cache (4,096 GB total)

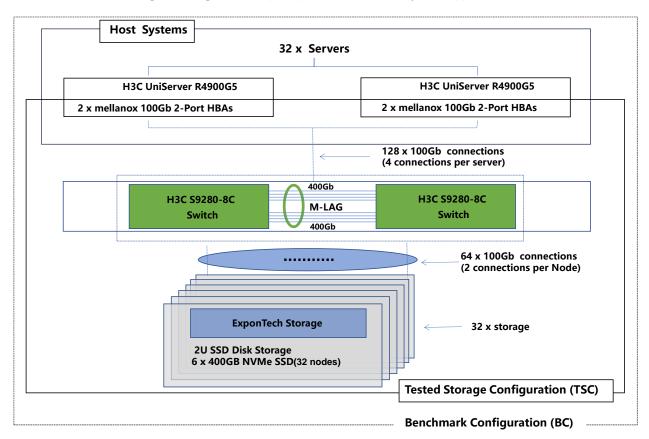
2x 100 Gbps Front End Ports (64 total)

192x 400 Gb NVME Storage Devices

2x H3C S9820-8C 100 Gbps Ethernet Switch (128 active ports)

Component Changes in Revised Full Disclosure Report

The following table outlines component changes that were made in revisions to this Full Disclosure Report.


Original Component	Revised Component	Description of Change
n/a	n/a	Initial submission

Submitted: September 19, 2023

Configuration Diagrams

BC/TSC Configuration Diagram

The following diagram illustrates the Benchmark Configuration (BC), including the Tested Storage Configuration (TSC) and the Host System(s).

Storage Network Configuration

The Tested Storage Configuration (TSC) comprised 32 ExponTech WDS V3 storage nodes driven by 32 host systems (H3C UniServer R4900 G5). Each host system had two 100 Gb Mellanox MCX623106AN-CDAT connections to 2 switches (H3C S9820-8C) respectively. This was a total of 128 100Gb connections between the hosts and the switches. Each ExponTech WDS V3 storage node had 1 Mellanox MCX623106AN-CDAT (2 connections) to each H3C S9820-8C switch. This is a total of 64 100 Gb connections between the storage nodes and the switches.

Benchmark Configuration Creation Process

Customer Tuning Parameters and Options

All the customer tuning parameters and options that have been altered from their default values for this benchmark are included in <u>Appendix C</u> and in the Supporting Files (see <u>Appendix A</u>).

Submitted: September 19, 2023

Tested Storage Configuration Creation

A detailed description of how the logical representation of the TSC was created is included in <u>Appendix D</u> and in the Supporting Files (see <u>Appendix A</u>).

Tested Storage Configuration Inventory

An inventory of the components in the TSC, as seen by the Benchmark Configuration, is included in Appendix E and in the Supporting Files (see Appendix A).

Workload Generator Storage Configuration

The SPC-1 Workload Generator storage configuration commands and parameters used to invoke the execution of the tests are included in $\frac{\text{Appendix F}}{\text{Appendix A}}$ and in the Supporting Files (see $\frac{\text{Appendix A}}{\text{Appendix A}}$).

Logical Volume Capacity and Application Storage Unit Mapping

The following table details the capacity of the Application Storage Units (ASUs) and how they are mapped to logical volumes (LVs). All capacities are reported in GB.

	LV per ASU	LV Capacity	Used per LV	Total per ASU	% ASU Capacity	Optimized*
ASU-1	18	687.3	687.3	12,371.9	45.0%	No
ASU-2	18	687.3	687.3	12,371.9	45.0%	No
ASU-3	4	687.3	687.3	2,749.3	10.0%	No
	SP	C-1 ASU Ca	pacity	27,493	*See Space (Optimization Techniques

Physical Storage Capacity and Utilization

The following table details the Physical Capacity of the storage devices and the Physical Capacity Utilization (percentage of Total Physical Capacity used) in support of hosting the ASUs. All capacities are reported in GB.

Devices	Count	Physical Capacity	Total Capacity
400 GB NVMe	192	400.1	76,817.0
	Total Physical Capacity		76,816
	Physical Capacity Utilization		35.79%

Data Protection

The data protection level used for all LVs was **Protected 2 (Replication)**, which was accomplished providing fully redundant pathways from each host to the storage cluster where all data was replicated and distributed on two separate storage nodes.

Space Optimization Information

Description of Utilized Techniques

The TSC did not use any space optimization techniques.

Submitted: September 19, 2023

Physical Free Space Metrics

The following table lists the Physical Free Space as measured at each of the required points during test execution. If space optimization techniques were not used, "NA" is reported.

Physical Free Space Measurement	Free Space (GB)
After Logical Volume Creation	NA
After ASU Pre-Fill	NA
After Repeatability Test Phase	NA

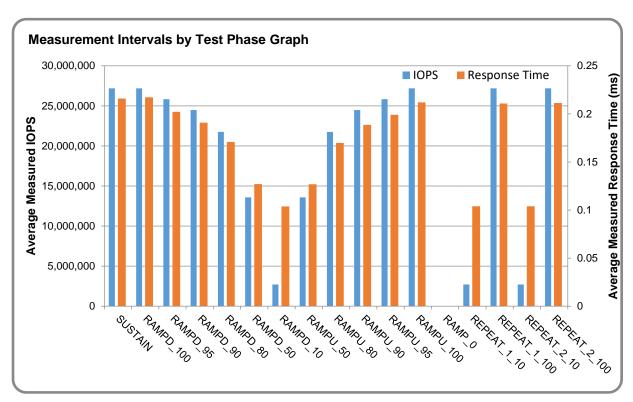
Space Optimization Metrics

The following table lists the required space optimization metrics. If space optimization techniques were not used, "NA" is reported.

Metric	Value
SPC-1 Space Optimization Ratio	NA
SPC-1 Space Effectiveness Ratio	NA

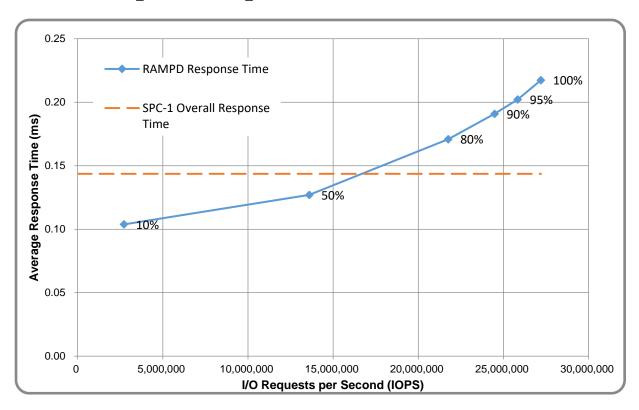
BENCHMARK EXECUTION RESULTS

This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs.


Benchmark Execution Overview

Workload Generator Input Parameters

The SPC-1 Workload Generator commands and input parameters for the Test Phases are presented in the Supporting Files (see <u>Appendix A</u>).


Measurement Intervals by Test Phase Graph

The following graph presents the average IOPS and the average Response Times measured over the MI of each Test Phase.

Response Time vs. Throughput Graph

The following graph presents the average Response Times versus the average IOPS for RAMPD $\,100$ to RAMPD $\,10.$

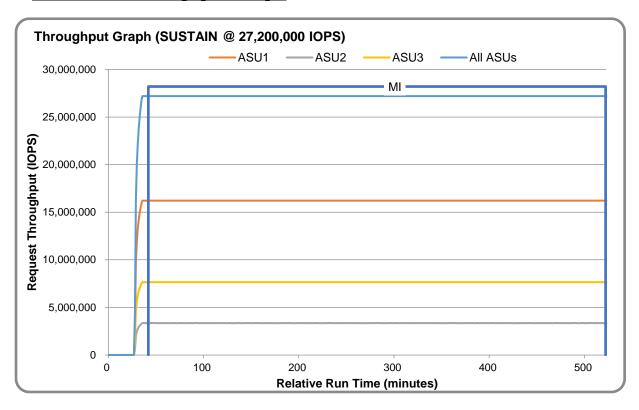
ASU Pre-Fill

The following table provides a summary of the Pre-Fill performed on the ASU prior to testing.

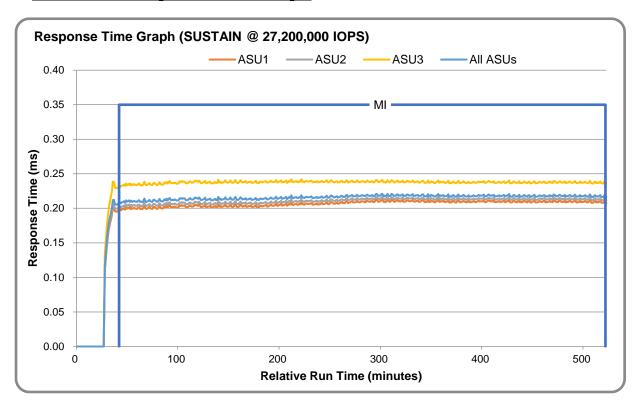
ASU Pre-Fill Summary						
Start Time	31-Aug-23 17:38:50	Requested IOP Level	100,000 MB/sec			
End Time	31-Aug-23 17:47:43	Observed IOP Level	51,573 MB/sec			
Duration	0:08:53	For additional details see the Supporting Files.				

SUSTAIN Test Phase

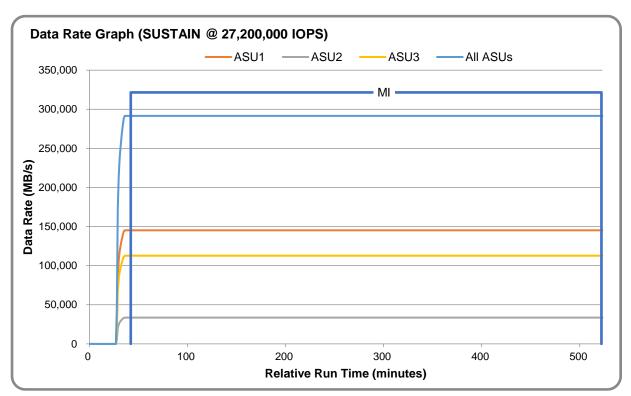
SUSTAIN - Results File


The results file generated during the execution of the SUSTAIN Test Phase is included in the Supporting Files (see <u>Appendix A</u>) as follows:

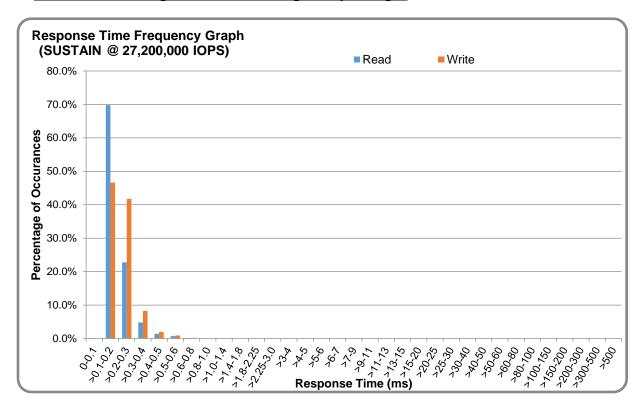
SPC1_METRICS_0_Raw_Results.xlsx


SUSTAIN - Execution Times

Interval	Start Date & Time	End Date & Time	Duration
Transition Period	31-Aug-23 18:21:05	31-Aug-23 18:36:05	0:15:00
Measurement Interval	31-Aug-23 18:36:05	01-Sep-23 02:36:06	8:00:01


SUSTAIN - Throughput Graph

SUSTAIN - Response Time Graph



SUSTAIN - Data Rate Graph

Submitted: September 19, 2023

SUSTAIN - Response Time Frequency Graph

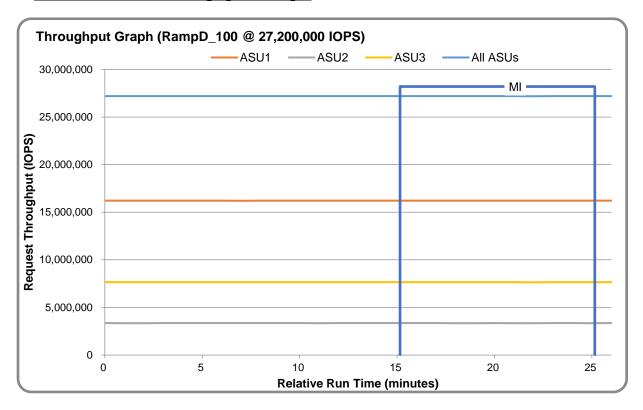
SUSTAIN - Intensity Multiplier

The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percentage of difference (Difference) between Defined and Measured.

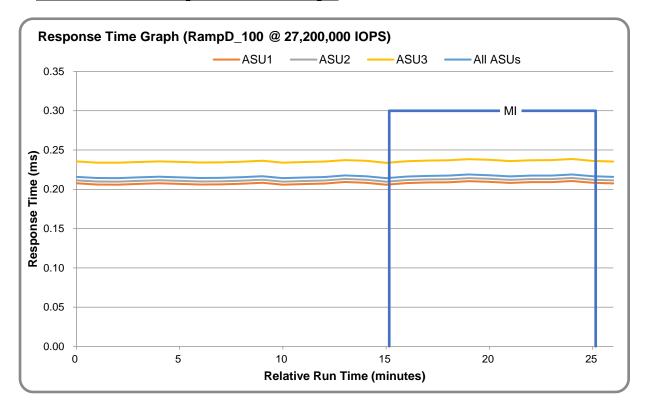
	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0001	0.0000	0.0001	0.0000	0.0002	0.0001	0.0001	0.0000
Difference	0.004%	0.002%	0.003%	0.000%	0.006%	0.004%	0.005%	0.002%

RAMPD_100 Test Phase

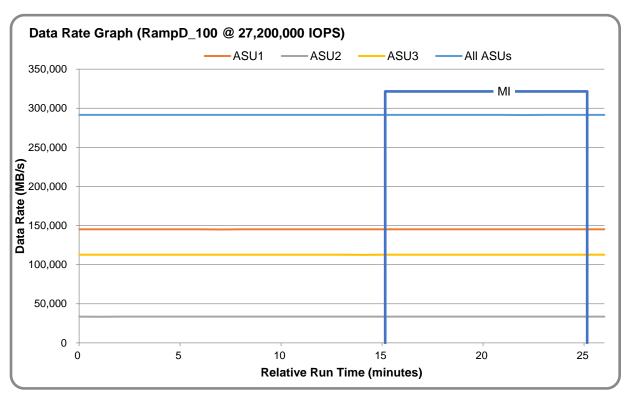
RAMPD_100 - Results File

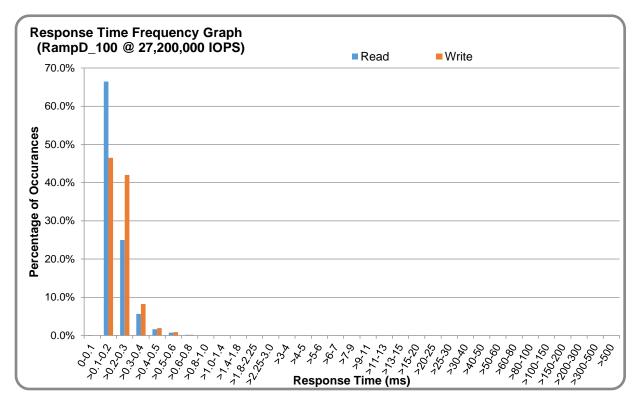

The results file generated during the execution of the RAMPD_100 Test Phase is included in the Supporting Files (see Appendix A) as follows:

SPC1_METRICS_0_Raw_Results.xlsx


RAMPD_100 - Execution Times

Interval	Start Date & Time	End Date & Time	Duration
Transition Period	01-Sep-23 02:37:06	01-Sep-23 02:52:07	0:15:01
Measurement Interval	01-Sep-23 02:52:07	01-Sep-23 03:02:07	0:10:00


RAMPD_100 - Throughput Graph


RAMPD_100 - Response Time Graph

RAMPD_100 - Data Rate Graph

RAMPD_100 - Response Time Frequency Graph

RAMPD_100 - Intensity Multiplier

The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percentage of difference (Difference) between Defined and Measured.

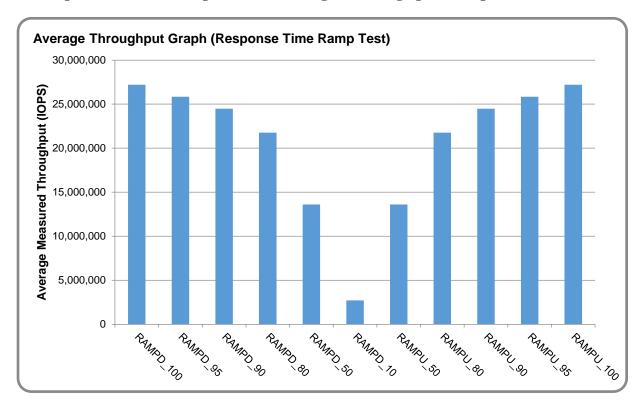
	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0002	0.0000	0.0001	0.0001	0.0003	0.0001	0.0001	0.0001
Difference	0.000%	0.002%	0.003%	0.001%	0.012%	0.005%	0.006%	0.002%

RAMPD_100 - I/O Request Summary

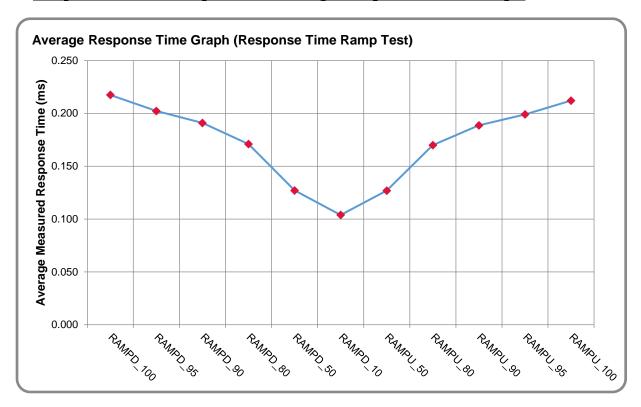
I/O Requests Completed in the Measurement Interval	16,320,829,797
I/O Requests Completed with Response Time <= 30 ms	16,320,783,225
I/O Requests Completed with Response Time > 30 ms	46,572

Response Time Ramp Test

Response Time Ramp Test - Results File


The results file generated during the execution of the Response Time Ramp Test is included in the Supporting Files (see <u>Appendix A</u>) as follows:

SPC1_METRICS_0_Raw_Results.xlsx


Response Time Ramp Test - Phases

The Response Time Ramp Test is comprised of 11 Test Phases, including six Ramp-Down Phases (executed at 100%, 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit) and five Ramp-Up Phases (executed at 50%, 80%, 90%, 95%, and 100% of the Business Scaling Unit).

Response Time Ramp Test - Average Throughput Graph

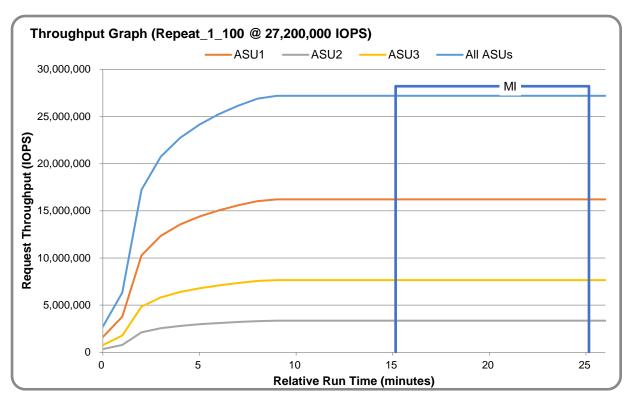
Response Time Ramp Test - Average Response Time Graph

Response Time Ramp Test - RAMPD_10 Response Time Graph

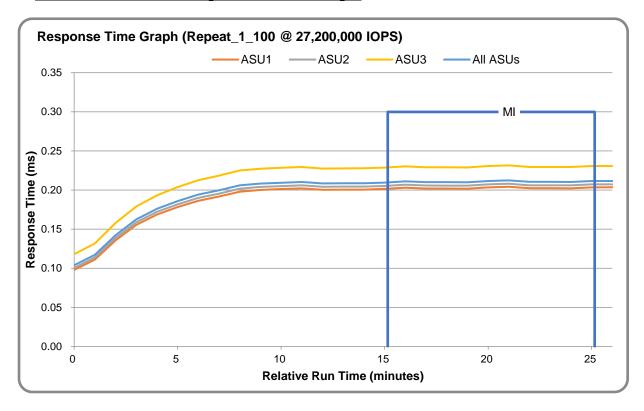
Repeatability Test

Repeatability Test Results File

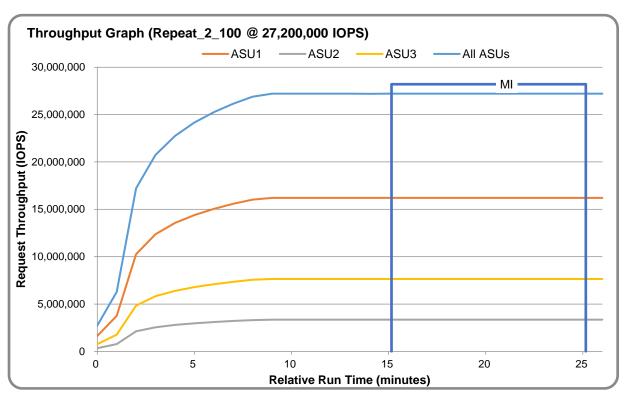
The results file generated during the execution of the Repeatability Test is included in the Supporting Files (see <u>Appendix A</u>) as follows:


• SPC1_METRICS_0_Raw_Results.xlsx

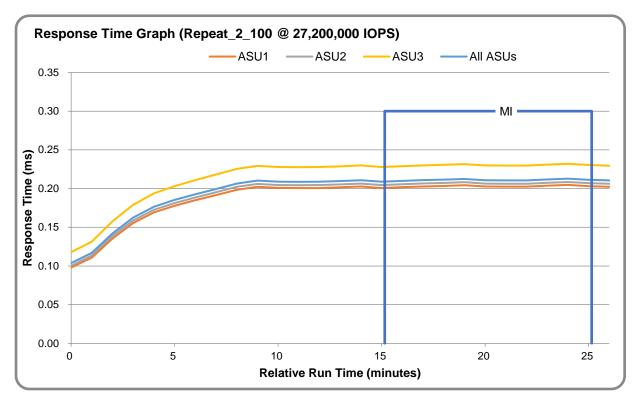
Repeatability Test Results


The throughput measurements for the Response Time Ramp Test (RAMPD) and the Repeatability Test Phases (REPEAT_1 and REPEAT_2) are listed in the table below.

Test Phase	100% IOPS	10% IOPS
RAMPD	27,201,325.6	2,720,131.1
REPEAT_1	27,201,971.9	2,720,149.4
REPEAT_2	27,201,625.5	2,720,207.1


REPEAT 1 100 - Throughput Graph

REPEAT_1_100 - Response Time Graph



 $\underline{REPEAT_2_100-Throughput\ Graph}$

Submitted: September 19, 2023

<u>REPEAT_2_100 - Response Time Graph</u>

<u>Repeatability Test - Intensity Multiplier</u>

The following tables lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percent of difference (Difference) between Defined and Measured.

REPEAT_1_100 Test Phase

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0002	0.0000	0.0001	0.0000	0.0003	0.0001	0.0001	0.0000
Difference	0.007%	0.006%	0.006%	0.002%	0.005%	0.007%	0.005%	0.001%

REPEAT_2_100 Test Phase

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0002	0.0001
Difference	0.006%	0.005%	0.007%	0.000%	0.007%	0.003%	0.005%	0.000%

Submitted: September 19, 2023

Data Persistence Test

Data Persistence Test Results File

The results files generated during the execution of the Data Persistence Test is included in the Supporting Files (see <u>Appendix A</u>) as follows:

- SPC1_PERSIST_1_0_Raw_Results.xlsx
- SPC1_PERSIST_2_0_Raw_Results.xlsx

Data Persistence Test Execution

The Data Persistence Test was executed using the following sequence of steps:

- The PERSIST_1_0 Test Phase was executed to completion.
- The Benchmark Configuration was taken through an orderly shutdown process and powered off.
- The Benchmark Configuration was powered on and taken through an orderly startup process.
- The PERSIST_2_0 Test Phase was executed to completion.

Data Persistence Test Results

Data Persistence Test Phase: Persist1				
Total Number of Logical Blocks Written	1,341,418,014			
Total Number of Logical Blocks Verified	556,335,860			
Total Number of Logical Blocks Overwritten	785,082,154			
Total Number of Logical Blocks that Failed Verification	0			
Time Duration for Writing Test Logical Blocks (sec.)	601			
Size in bytes of each Logical Block	8,192			
Number of Failed I/O Requests in the process of the Test	0			

Committed Data Persistence Implementation

ExponTech WDS V3 uses NVME SSD as the storage carrier for data and metadata. When data is written to the storage cluster, I/O will not return success until all data (including replicated data and meta data) are written to the NVME SSD disk.

APPENDIX A: SUPPORTING FILES

The following table details the content of the Supporting Files provided as part of this Full Disclosure Report.

File Name	Description	Location
/SPC1_RESULTS	Data reduction worksheets	root
SPC1_INIT_0_Raw_Results.xlsx	Raw results for INIT Test Phase	/SPC1_RESULTS
SPC1_METRICS_0_Quick_Look.xlsx	Quick Look Test Run Overview	/SPC1_RESULTS
SPC1_METRICS_0_Raw_Results.xlsx	Raw results for Primary Metrics Test	/SPC1_RESULTS
SPC1_METRICS_0_Summary_Results.xlsx	Primary Metrics Summary	/SPC1_RESULTS
SPC1_PERSIST_1_0_Raw_Results.xlsx	Raw results for PERSIST1 Test Phase	/SPC1_RESULTS
SPC1_PERSIST_2_0_Raw_Results.xlsx	Raw results for PERSIST2 Test Phase	/SPC1_RESULTS
SPC1_Run_Set_Overview.xlsx	Run Set Overview Worksheet	/SPC1_RESULTS
SPC1_VERIFY_0_Raw_Results.xlsx	Raw results for first VERIFY Test Phase	/SPC1_RESULTS
SPC1_VERIFY_1_Raw_Results.xlsx	Raw results for second VERIFY Test Phase	/SPC1_RESULTS
/C_Tuning	Tuning parameters and options	root
ai-max-nr.sh	Adjust aio-max-nr	/C_Tuning
/D_Creation	Storage configuration creation	root
auto_create.py	Create storage cluster	/D_Creation
connect_nvme.sh	Map all LUNs on hosts as NVMe disk	/D_Creation
init_wds.sh	format storage cluster	/D_Creation
lvm.sh	Create logical volumes	/D_Creation
lvm_active.sh	activate logical volumes	/D_Creation
/E_Inventory	Configuration inventory	root
profile_WDS.sh	Captures profile of storage environment	/E_Inventory
volume_list.sh	Captures list of logical volumes	/E_Inventory
profile_WDS-init.txt	Storage configuration before INIT	/E_Inventory
profile_WDS-verify1.txt	Storage configuration before VERIFY1	/E_Inventory
profile_WDS-metrics.txt	Storage configuration before METRICS	/E_Inventory
profile_WDS-verify2.txt	Storage configuration before VERIFY2	/E_Inventory
profile_WDS-persist1.txt	Storage configuration before PERSIST1	/E_Inventory
profile_WDS-persist2.txt	Storage configuration before PERSIST2	/E_Inventory
profile_WDS-end.txt	Storage configuration after test	/E_Inventory
volume_list_init.txt	List of logical volumes before INIT	/E_Inventory
volume_list_verify1.txt	List of logical volumes before VERIFY1	/E_Inventory
volume_list_metrics.txt	List of logical volumes before METRICS	/E_Inventory

volume_list_verify2.txt	List of logical volumes before VERIFY2	/E_Inventory
volume_list_persist1.txt	List of logical volumes before PERSIST1	/E_Inventory
volume_list_persist2.txt	List of logical volumes before PERSIST2	/E_Inventory
volume_list_end.txt	List of logical volumes after test	/E_Inventory
dmidecode_info.sh	Collect node system info	/E_Inventory
dmidecode_info_init.txt	List node system info	/E_Inventory
lsblk_info.sh	Collect node disk info	/E_Inventory
lsblk_info_init.txt	List node disk info	/E_Inventory
network_info.sh	Collect node network info	/E_Inventory
network_info_init.txt	List node network info	/E_Inventory
Operate_System_info.sh	Collect node OS info	/E_Inventory
OS_info_init.txt	List node OS info	/E_Inventory
/F_Generator	Workload generator	root
HOST32.HST	Host configuration file	/F_Generator
slave_asu.asu	Define LUNs hosting the ASUs	/F_Generator
WDS_init.sh	Execute INIT	/F_Generator
WDS_metrics.sh	Execute METRICS	/F_Generator
WDS_persist1.sh	Execute PERSIST1	/F_Generator
WDS_persist2.sh	Execute PERSIST2	/F_Generator
WDS_verify1.sh	Execute VERIFY1	/F_Generator
WDS_verify2.sh	Execute VERIFY1	/F_Generator

APPENDIX B: THIRD PARTY QUOTATION

All components are available directly through the Test Sponsor (Huarui Expon Technologies).

APPENDIX C: TUNING PARAMETERS AND OPTIONS

See Appendix D Step 4.

APPENDIX D: STORAGE CONFIGURATION CREATION

Step 1: Create Storage Pools, USS and NVMe-oF

Execute init_wds.sh to complete the following:

- Create 8 storage pools
- Create 4 USS gateways on each host node, 128 USS total
- Create 48 LUNs (6 LUN per Pool, 558 GiB per LUN)
- Create 4 NVMe-oF
- Map LUNs and USS to the 4 NVMe-oF

Step 2: map LUNs as NVMe disks on host nodes

Run connect_nvme.sh script to map all LUNs on hosts as NVMe disk.

```
[root@node201 D_Creation]# date
Thu Aug 31 17:12:34 CST 2023
[root@node201 D_Creation]# sh connect_nvme.sh
start discover
=====Discovery Log Entry 0======
trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not required portid: 0
trsvcid: 4421
subnqn: nqn.2023-08.com.sds.wds:nvmf01
traddr: 10.1.100.189
rdma_prtype: not specified
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000
=====Discovery Log Entry 0======
trtype: rdma
adrfam: ipv4
subtype: nyme subsystem
treq: not required
portid: 0
trsvcid: 4422
subnqn: nqn.2023-08.com.sds.wds:nvmf02
traddr: 10.1.100.189
rdma_prtype: not specified
rdma_qptype: connected
rdma cms: rdma-cm
rdma pkey: 0x0000
====Discovery Log Entry 0=====
trtype: rdma adrfam: ipv4
subtype: nvme subsystem
treq: not required portid: 0
trsvcid: 4423
```

Step 3: Create logical volumes, activate them on each host node

Execute the lym.sh script to Create 48 Physical Volumes. Create 1 Volume Group(vg1) using 48 Physical Volumes. Create 18 Logical Volumes, each with a capacity of 640 GiB, on vg1 for ASU-1. Create 18 Logical Volumes, each with a capacity of 640 GiB, on vg1 for ASU-2. Create 4 Logical Volumes, each with a capacity of 640 GiB, on vg1 for ASU-3.

```
[root@node201 D_Creation]# sh lvm.sh
       --persist node:189
persist_nvme.sh
dev/nvme0n1 uuid is dfa26a3a-4669-11ee-b165-e878ee3b64d0 nsid is 1 ,new udev disk is wds/nvme0n1/
/dev/nvmeOn10 uuid is dfebc51b-4669-11ee-b8c7-e878ee3b5d44 nsid is 10 ,new udev disk is wds/nvmeOn10 /dev/nvmeOn11 uuid is dff16f4a-4669-11ee-b165-e878ee3b6d40 nsid is 11 ,new udev disk is wds/nvmeOn11
dev/nyme0n12 uuid is dff7231e-4669-11ee-9f54-e878ee3b67c4 nsid is 12 ,new udev disk is wds/nyme0n12/
/dev/nvme0n2 uuid is dfaaf950-4669-11ee-9f54-e878ee3b67c4 nsid is 2 ,new udev disk is wds/nvme0n2
dev/nymeθn3 uuid is dfb3580d-4669-11ee-b165-e878ee3b64d0 nsid is 3 ,new udev disk is wds/nyme0n3
dev/nvmeθn4 uuid is dfbd24ac-4669-11ee-b8c7-e878ee3b5d44 nsid is 4 ,new udev disk is wds/nvmeθn4
dev/nvmeθn5 uuid is dfc4fd5f-4669-11ee-9f54-e878ee3b67c4 nsid is 5 ,new udev disk is wds/nvmeθn5
/dev/nyme0n6 uuid is dfccfc26-4669-11ee-b8c7-e878ee3b5d44 nsid is 6 ,new udev disk is wds/nyme0n6
dev/nymeθn7 uuid is dfd497c8-4669-11ee-b165-e878ee3b64d0 nsid is 7 ,new udev disk is wds/nymeθn7
dev/nymeθn8 uuid is dfdd1e7b-4669-11ee-9f54-e878ee3b67c4 nsid is 8 ,new udev disk is wds/nymeθn8
dev/nvme0n9 uuid is dfe51625-4669-11ee-b8c7-e878ee3b5d44 nsid is 9 ,new udev disk is wds/nvme0n9/
/dev/nvme1n1 uuid is dffdbb56-4669-11ee-b8c7-e878ee3b5d44 nsid is 1
                                                                                ,new udev disk is wds/nvme1n1
/dev/nvme1n10 uuid is e03c6d80-4669-11ee-b8c7-e878ee3b5d44 nsid is 10 ,new udev disk is wds/nvme1n10
/dev/nvme1n11 uuid is e04338ac-4669-11ee-9f54-e878ee3b67c4 nsid is 11 ,new udev disk is wds/nvme1n11
dev/nvme1n12 uuid is e04c60e1-4669-11ee-b165-e878ee3b64d0 nsid is 12 ,new udev disk is wds/nvme1n12/
/dev/nvme1n2 uuid is e0042dd0-4669-11ee-9f54-e878ee3b67c4 nsid is 2 ,new udev disk is wds/nvme1n2
/dev/nvme1n3 uuid is e00b8450-4669-11ee-b8c7-e878ee3b5d44 nsid is 3 ,new udev disk is wds/nvme1n3
dev/nvme1n4 uuid is e012bc12-4669-11ee-b165-e878ee3b64d0 nsid is 4 ,new udev disk is wds/nvme1n4/
dev/nyme1n5 uuid is e01a82b4-4669-11ee-b8c7-e878ee3b5d44 nsid is 5 ,́new udev disk is wds/nyme1n5/
dev/nvme1n6 uuid is e023765e-4669-11ee-b165-e878ee3b64d0 nsid is 6 ,new udev disk'
                                                                                                 is wds/nvme1n6
dev/nvme1n7 uuid is e02ad7b7-4669-11ee-b8c7-e878ee3b5d44 nsid is 7 ,new udev disk is wds/nvme1n7/
dev/nvme1n8 uuid is e0306d9a-4669-11ee-b165-e878ee3b64d0 nsid is 8 ,new udev disk/
dev/nvme1n9 uuid is e035ea5c-4669-11ee-9f54-e878ee3b67c4 nsid is 9 ,new udev disk is wds/nvme1n9/
dev/nvme2n1 uuid is e0539262-4669-11ee-b165-e878ee3b64d0 nsid is 1
                                                                                ,new udev disk is wds/nvme2n1
dev/nvme2n10 uuid is e0a0502e-4669-11ee-9f54-e878ee3b67c4 nsid is 10 ,new udev disk is wds/nvme2n10'
dev/nvme2n11 uuid is e0a75606-4669-11ee-b165-e878ee3b64d0 nsid is 11 ,new udev disk is wds/nvme2n11
dev/nvme2n12 uuid is e0ace0c1-4669-11ee-b8c7-e878ee3b5d44 nsid is 12 ,new udev disk is wds/nvme2n12
/dev/nyme2n2 uuid is e05d5002-4669-11ee-b8c7-e878ee3b5d44 nsid is 2 ,new udev disk is wds/nyme2n2
/dev/nyme2n3 uuid is e06825dd-4669-11ee-b8c7-e878ee3b5d44 nsid is 3 ,new udev disk is wds/nyme2n3
dev/nvme2n4 uuid is e0726bf6-4669-11ee-b8c7-e878ee3b5d44 nsid is 4 ,new udev disk is wds/nvme2n4
/dev/nvme2n5 uuid is e0784d13-4669-11ee-b165-e878ee3b64d0 nsid is 5 ,new udev disk is wds/nvme2n5
dev/nvme2n6 uuid is e0813550-4669-11ee-9f54-e878ee3b67c4 nsid is 6 ,new udev disk is wds/nvme2n6
/dev/nvme2n7 uuid is e08b92d9-4669-11ee-b8c7-e878ee3b5d44 nsid is 7 ,new udev disk is wds/nvme2n7
/dev/nyme2n8 uuid is e0941ef4-4669-11ee-b165-e878ee3b64d0 nsid is 8 ,new udev disk is wds/nvme2n8
/dev/nyme2n9 uuid is e09add0c-4669-11ee-b8c7-e878ee3b5d44 nsid is 9 ,new udev disk is wds/nyme2n9
dev/nvme3n1 uuid is e0b3973b-4669-11ee-9f54-e878ee3b67c4 nsid is 1
                                                                                ,new udev disk is wds/nvme3n1
dev/nvme3n10 uuid is e0eb336f-4669-11ee-9f54-e878ee3b67c4 nsid is 10 ,new udev disk is wds/nvme3n10
dev/nvme3n11 uuid is e0f0b6f9-4669-11ee-b8c7-e878ee3b5d44 nsid is 11 ,new udev disk is wds/nvme3n11/
/dev/nvme3n12 uuid is e0f66654-4669-11ee-b165-e878ee3b64d0 nsid is 12 ,new udev disk is wds/nvme3n12
/dev/nvme3n2 uuid is e0b9781b-4669-11ee-b165-e878ee3b64d0 nsid is 2 ,new udev disk is wds/nvme3n2 /dev/nvme3n3 uuid is e0b9781b-4669-11ee-9f54-e878ee3b67c4 nsid is 3 ,new udev disk is wds/nvme3n3 /dev/nvme3n4 uuid is e0c536ed-4669-11ee-b8c7-e878ee3b5d44 nsid is 4 ,new udev disk is wds/nvme3n4 /dev/nvme3n5 uuid is e0cbc994-4669-11ee-9f54-e878ee3b67c4 nsid is 5 ,new udev disk is wds/nvme3n5
/dev/nvme3n6 uuid is e0d2f203-4669-11ee-9f54-e878ee3b67c4 nsid is 6
                                                                               ,new udev disk is wds/nvme3n6
dev/nvme3n7 uuid is e0d97c2b-4669-11ee-9f54-e878ee3b67c4 nsid is 7 ,new udev disk
                                                                                                 is wds/nvme3n7
dev/nvme3n8 uuid is e0df3afb-4669-11ee-b8c7-e878ee3b5d44 nsid is 8 ,new udev disk is wds/nvme3n8/
dev/nvme3n9 uuid is e0e5cd40-4669-11ee-b8c7-e878ee3b5d44 nsid is 9
                                                                               ,new udev disk is wds/nvme3n9
      ---end persist node:189
 -----persist node:190
```

Execute the lvm_active.sh to make each logical volume available (activate)

```
[root@node201 D_Creation]# date
Thu Aug 31 17:29:31 CST 2023
[root@node201 D_Creation]# sh lvm_active.sh
189
40 logical volume(s) in volume group "vgl" now active
190
40 logical volume(s) in volume group "vgl" now active
191
40 logical volume(s) in volume group "vgl" now active
192
40 logical volume(s) in volume group "vgl" now active
193
40 logical volume(s) in volume group "vgl" now active
194
40 logical volume(s) in volume group "vgl" now active
195
40 logical volume(s) in volume group "vgl" now active
196
40 logical volume(s) in volume group "vgl" now active
196
40 logical volume(s) in volume group "vgl" now active
196
40 logical volume(s) in volume group "vgl" now active
```

Step 4: Change the Scheduler on each Host System

Change the scheduler on each host system by executing the set_nr_requests.sh script on each host system. This will change the maximum number of AIO operations to 1048576.

APPENDIX E: CONFIGURATION INVENTORY

The scripts used to collect the configuration inventory and the log files that were generated are available in the Supporting Files (see <u>Appendix A</u>).

APPENDIX F: WORKLOAD GENERATOR

The ASUs accessed by the SPC-1 workload generator are defined in slave_asu.asu. The hosts used to drive the SPC-1 workload are defined in HOST32.HST. The scripts used to execute the benchmark sequence are:

- WDS_init.sh
- WDS_verify1.sh
- WDS_metrics.sh
- WDS_verify2.sh
- WDS_persist1.sh
- WDS_persist2.sh

The files are included in the Supporting Files (see Appendix A).