

SPC BENCHMARK 1TM

FULL DISCLOSURE REPORT

FUJITSU LIMITED ETERNUS DX900 S5

SPC-1 V3.8.0

SUBMISSION IDENTIFIER: A32012

SUBMITTED FOR REVIEW: NOVEMBER 5, 2019

First Edition – November 2019

THE INFORMATION CONTAINED IN THIS DOCUMENT IS DISTRIBUTED ON AN AS IS BASIS WITHOUT ANY WARRANTY EITHER EXPRESS OR IMPLIED. The use of this information or the implementation of any of these techniques is the customer's responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item has been reviewed by Fujitsu Limited for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environment do so at their own risk.

This publication was produced in the United States. Fujitsu Limited may not offer the products, services, or features discussed in this document in other countries, and the information is subject to change with notice. Consult your local Fujitsu Limited representative for information on products and services available in your area.

© Copyright Fujitsu Limited 2019. All rights reserved.

Permission is hereby granted to publicly disclose and reproduce this document, in whole or in part, provided the copyright notice as printed above is set forth in full text on the title page of each item reproduced.

Trademarks

SPC Benchmark 1, SPC-1, SPC-1 IOPS, SPC-1 LRT and SPC-1 Price-Performance are trademarks of the Storage Performance Council.

ETERNUS and the Fujitsu logo are trademarks or registered trademarks of Fujitsu Limited in the United States and other countries. All other brands, trademarks, and product names are the property of their respective owners.

Benchmark Specification and Glossary

The official SPC Benchmark 1TM (SPC-1TM) specification is available on the website of the Storage Performance Council (SPC) at <u>www.spcresults.org</u>.

The SPC-1TM specification contains a glossary of the SPC-1TM terms used in this publication.

Table of Contents

Audit Certification4
Letter Of Good Faith
Executive Summary7
Configuration Information12
Benchmark Configuration and Tested Storage Configuration12
Benchmark Configuration Creation Process14
Benchmark Execution Results16
Benchmark Execution Overview16
SUSTAIN Test Phase17
RAMPD_100 Test Phase 20
Response Time Ramp Test 23
Repeatability Test
Space Optimization Techniques28
Data Persistence Test 29
Appendix A: Supporting Files
Appendix B: Third Party Quotation
Appendix C: Tuning Parameters and Options
Appendix D: Storage Configuration Creation
Step 1 – Creation of RAID Groups
Step 2 – Creation of the Logical Volumes
Step 3 – Creation of the Global Hot Spares
Step 4 – Assignment of LUN Mapping to the Linux Host Systems
Step 5 – Creation of striped logical volumes
Referenced Scripts
Appendix E: Configuration Inventory
Appendix F: Workload Generator
Referenced Scripts

AUDIT CERTIFICATION

Mr. Kun Katsumata Fujitsu Limited 1250 East Arques Ave. PO box 3470 Sunnyvale, CA 94088-3470

November 2, 2019

I verified the SPC Benchmark 1^{TM} (SPC- 1^{TM} V3.8) test execution and performance results of the following Tested Storage Product:

ETERNUS DX900 S5

The results were:

SPC-1 IOPS™	1,601,165
SPC-1 Price-Performance™	\$386.59/SPC-1 KIOPS™
SPC-1 IOPS™ Response Time	0.368 ms
SPC-1 Overall Response Time	0.215 ms
SPC-1 ASU Capacity	66,274 GB
SPC-1 ASU Price	\$9.34/GB
SPC-1 Total System Price	\$618,983.46

In my opinion, these performance results were produced in compliance with the SPC requirements for the benchmark.

The testing was executed using the SPC-1 Toolkit Version v3.0.2-1-g823a. The audit process was conducted in accordance with the SPC Policies and met the requirements for the benchmark.

A Letter of Good Faith was issued by the Test Sponsor, stating the accuracy and completeness of the documentation and testing data provided in support of the audit of this result.

A Full Disclosure Report for this result was prepared by InfoSizing, reviewed and approved by the Test Sponsor, and can be found at <u>www.spcresults.org</u> under the Submission Identifier A32012.

63 Lourdes Dr. | Leominster, MA 01453 | 978-343-6562 | www.sizing.com

The independent audit process conducted by InfoSizing included the verifications of the following items:

- The physical capacity of the data repository;
- The total capacity of the Application Storage Unit (ASU);
- The accuracy of the Benchmark Configuration diagram;
- The tuning parameters used to configure the Benchmark Configuration;
- The Workload Generator commands used to execute the testing;
- The validity and integrity of the test result files;
- The compliance of the results from each performance test;
- The compliance of the results from each persistence test;
- The compliance of the submitted pricing model; and
- The differences between the tested and the priced configuration, if any.

The Full Disclosure Report for this result was prepared in accordance with the disclosure requirements set forth in the specification for the benchmark.

The following benchmark requirements, if any, were waived in accordance with the SPC Policies:

None.

Respectfully Yours,

Jahnson

Doug Johnson, Certified SPC Auditor

63 Lourdes Dr. | Leominster, MA 01453 | 978-343-6562 | www.sizing.com

Full Disclosure Report

Kanagawa-ken,Kawasaki-shi,Nakahara-ku,Kamikodanaka,4-1-1,JAPAN211-8588 Phone: 044-754-3423

October 23, 2019 From: Koji Uchida, Fujitsu Limited

To:Doug Johnson, SPC Auditor PerfLabs, Inc. DBA InfoSizing 63 Lourdes Drive Leominster, MA 01453-6709 USA

Contact Information: Kun Katsumata Fujitsu America, Inc. 1250 East Arques Ave. PO Box 3470 Sunnyvale, CA 94088, U.S.A.

Subject: SPC-1 Letter of Good Faith for the FUJITSU Storage ETERNUS DX900 S5

Fujitsu Limited is the SPC·1 Test Sponsor for the above listed product. To the best of our knowledge and belief, the required SPC·1 benchmark results and materials we have submitted for that product are complete, accurate, and in full compliance with V3.8 of the SPC·1 benchmark specification.

In addition, we have reported any items in the Benchmark Configuration and execution of the benchmark that affected the reported results even if the items are not explicitly required to be disclosed by the SPC 1 benchmark specification.

Signed:

Date:

Xoji Udvida

Koji Uchida Vice President, Storage System Business Div.

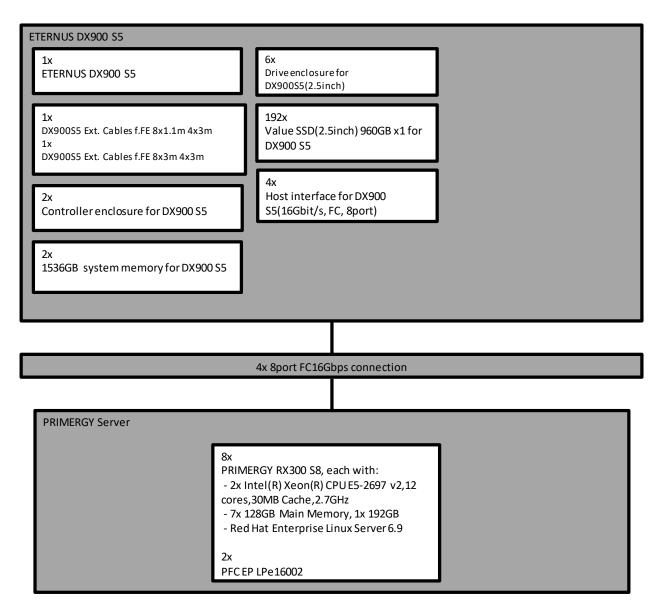
Oct 23, 2019

Full Disclosure Report

Submission Identifier: A32012 Submitted for Review: November 5, 2019

SPC BENCHMARK 1TM

EXECUTIVE SUMMARY


FUJITSU LIMITED ETERNUS DX900 S5

SPC-1 IOPS™	1,601,165
SPC-1 Price-Performance™	\$386.59/SPC-1 KIOPS™
SPC-1 IOPS™ Response Time	0.368 ms
SPC-1 Overall Response Time	0.215 ms
SPC-1 ASU Capacity	66,274 GB
SPC-1 Space Effectiveness Ratio	NA
SPC-1 ASU Price	\$9.34/GB
SPC-1 Total System Price	\$618,983.46
Data Protection Level	Protected 2 (RAID1)
Physical Storage Capacity	184,320 GB
Pricing Currency / Target Country	U.S. Dollars / USA

SPC-1 V3.8.0

SUBMISSION IDENTIFIER: A32012 SUBMITTED FOR REVIEW: NOVEMBER 5, 2019

Benchmark Configuration Diagram

Full Disclosure Report

Tested Storage Product Description

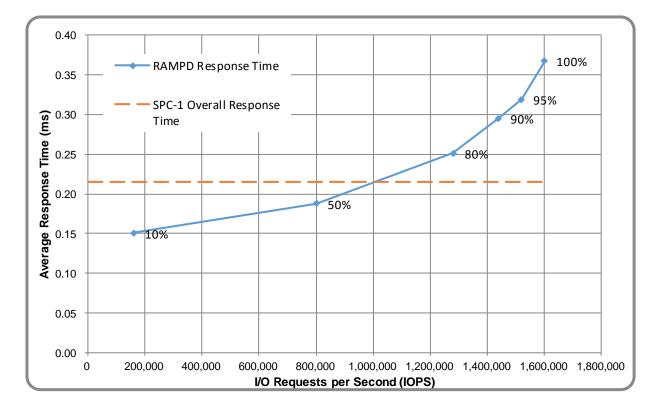
Fujitsu Storage ETERNUS DX900 S5 is an Enterprise-grade, midrange hybrid storage system that offers modular scalability, leading performance headroom and relentless business continuity capabilities. Latest data reduction technologies and fully automated quality-of-service functions make ETERNUS DX900 S5 ideal for the data management of business-critical core applications as well as of large and fast-growing amounts of unstructured data. Various types of disk and flash drives can be combined flexibly to balance capacity, data access speed and cost for specific business needs.

For additional detail, please visit:

 $\frac{https://www.fujitsu.com/global/products/computing/storage/disk/eternus-dx/dx900-s5/index.html}{}$

Priced Storage Configuration Components

16x Emulex LPe16002B-M6-F 16Gb 2-port PCIe Fibre Channel Adapter
1x DX900 S5 with:
2x Controller Enclosure Module, each with:
2x Controller Module, each with:
768 GB cache
2x Channel Adapter, each with:
4x 16 Gbps Fibre Channel Host Ports
192x 960 GB SSD Storage Devices (without Hot Spare)


Part No.	Description	Source	Qty	Unit Price	Ext. Price	Disc.	Disc. Price
	Hardware & So	ftware					
ET905SAU	ETERNUS DX900 S5	1	1	33,610.00	33,610.00	53%	15,796.70
ETRCAU	Controller enclosure for DX900 S5	1	2	49,040.00	98,080.00	53%	46,097.60
ETREADU	Drive enclosure for DX500/DX600/DX900 S5(2.5inch)	1	6	4,470.00	26,820.00	53%	12,605.40
ETRKC30U	AC100/200V Power Cord for AF650 S3, DX500/DX600/DX900 S5(IEC60320 C14, 3m)	1	10	160.00	1,600.00	53%	752.00
ETRHH8	Host interface for DX500/DX600/DX900 S5(16Gbit/s, FC, 8port)	1	4	6,080.00	24,320.00	53%	11,430.40
ETRM9C	1536GB system memory for DX900 S5	1	2	104,710.00	209,420.00	53%	98,427.40
ETRSA9	Value SSD(2.5inch) 960GB x1 for DX500/DX600/DX900 S5	1	192	3,680.00	706,560.00	53%	332,083.20
ETRRASU	19-inch rack (Standard door, 2000mm, Base rack with stabilizers)	1	1	4,070.00	4,070.00	53%	1,912.90
ETRP48U	Power distribution unit for AF650 S3, DX500/DX600/DX900 S5(AC24A/200-240V, 2U, 16Outlets)	1	2	1,870.00	3,740.00	53%	1,757.80
ETRKB11	Cable set between frontend enclosure and controller enclosures for DX900 S5(1.1m/3m)	1	1	2,410.00	2,410.00	53%	1,132.70
ETRKB30	Cable set between frontend enclosure and controller enclosures for DX900 S5(3m/3m)	1	1	3,200.00	3,200.00	53%	1,504.00
13-FPIMD50LCLLC010-OM2	FC cable MMF 10 m, Connector LC-LC, OM2	1	32	40.00	1,280.00	53%	601.60
S26361-F4994-E2	PFC EP LPe16002	1	16	938.00	15,008.00	53%	7,053.76
				На	rdware & Software Su	ıbtotal	531,155.46
	Support & Maint	enance					
	ETERNUS DX900 Warranty Uplift, 36 Months, Enhanced Plus Level, 24x7 4hr Onsite, Prepaid billing	1	1	117,104.00	117,104.00	25%	87,828.00
				Suppo	ort & Maintenance Su	btotal	87,828.00
SPC-1 Total System Price						618,983.46	
SPC-1 IOPS™						1,601,165	
	SPC-1 Price-Performance™ (\$/SP	C-1 KIO	PS™)				386.59
SPC-1 ASU Capacity (GB)					66,274		
SPC-1 ASU Price (\$/GB)						9.34	

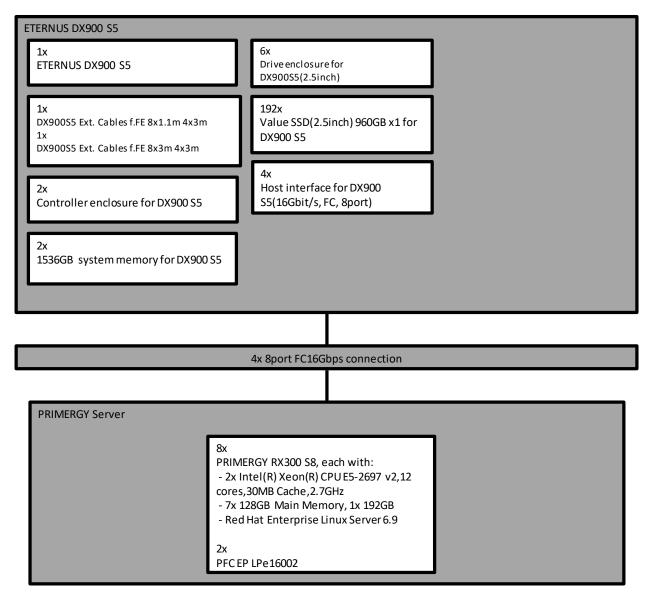
Storage Configuration Pricing

Discount Details: The discounts shown are based on the storage capacity purchased and are generally available.

Warranty: The 3-year maintenance and support included in the above pricing meets or exceeds a 24x7 coverage with a 4-hour response time.

Availability Date: Currently Available.

Response Time and Throughput Graph


Contact Information				
Test Sponsor Primary Contact	Fujitsu Limited – http://www.fujitsu.com/services/computing/storage/ Kun Katsumata – kkatsumata@us.fujitsu.com			
SPC Auditor	InfoSizing – <u>www.sizing.com</u> Doug Johnson – doug@sizing.com			

Revision Information			
SPC Benchmark 1 [™] Revision	V3.8.0		
SPC-1 Workload Generator Revision	v3.0.2-1-g823a		
Publication Revision History	Initial Publication		

CONFIGURATION INFORMATION

Benchmark Configuration and Tested Storage Configuration

The following diagram illustrates the Benchmark Configuration (BC), including the Tested Storage Configuration (TSC) and the Host System(s).

Storage Network Configuration

The Benchmark Configuration utilized direct-attached storage.

Host System and Tested Storage Configuration Components

The following table lists the components of the Host System(s) and the TSC.

Host Systems				
8x Fujitsu PRIMERGY RX300 S8				
2x Intel® Xeon® CPU E5-2697 (2.7 GHz, 12-Core, 30 MB L3)				
7x 128 GB Main Memory, 1x 192 GB Main Memory				
Red Hat Enterprise Linux Server 6.9				
Tested Storage Configuration				
16x Emulex LPe16002B-M6-F 16Gb 2-port PCIe Fibre Channel Adapter				
1x DX900 S5 with:				
2x Controller Enclosure Module, each with:				
2x Controller Module, each with:				
768 GB cache				
2x Channel Adapter, each with:				
4x 16 Gbps Fibre Channel Host Ports				
192x 960 GB SSD Storage Devices (without Hot Spare)				

Differences Between Tested and Priced Storage Configurations

There were no differences between the TSC and the Priced Storage Configuration.

<u>Component Changes in Revised Full Disclosure Report</u>

The following table outlines component changes that were made in revisions to this Full Disclosure Report.

Original Component	Revised Component	Description of Change
n/a	n/a	Initial submission

Benchmark Configuration Creation Process

Customer Tuning Parameters and Options

All the customer tuning parameters and options that have been altered from their default values for this benchmark are included in Appendix C and in the Supporting Files (see Appendix A).

Tested Storage Configuration Creation

A detailed description of how the logical representation of the TSC was created is included in Appendix D and in the Supporting Files (see Appendix A).

Tested Storage Configuration Inventory

An inventory of the components in the TSC, as seen by the Benchmark Configuration, is included in Appendix E and in the Supporting Files (see Appendix A).

Workload Generator Storage Configuration

The SPC-1 Workload Generator storage configuration commands and parameters used to invoke the execution of the tests are included in Appendix F and in the Supporting Files (see Appendix A).

Logical Volume Capacity and Application Storage Unit Mapping

The following table details the capacity of the Application Storage Units (ASUs) and how they are mapped to logical volumes (LVs). All capacities are reported in GB.

	LV per ASU	LV Capacity	Used per LV	Total per ASU	% ASU Capacity	Optimized*
ASU-1	9	3,313.7	3,313.7	29,823.3	45.0%	No
ASU-2	9	3,313.7	3,313.7	29,823.3	45.0%	No
ASU-3	2	3,313.7	3,313.7	6,627.4	10.0%	No
	SP	C-1 ASU Ca	pacity	66,274	*See Space Optimization Technique	

Physical Storage Capacity and Utilization

The following table details the Physical Capacity of the storage devices and the Physical Capacity Utilization (percentage of Total Physical Capacity used) in support of hosting the ASUs. All capacities are reported in GB.

Devices	Count	Physical Capacity	Total Capacity
SSD	192	960.0	184,320.0
	Total Phy	sical Capacity	184,320
	Physical Capacity Utilization		35.96%

Data Protection

The data protection level used for all LVs was **Protected 2 (RAID1)**, which was accomplished by configuring dual controllers, dual power, dual fans, and RAID1 device protection.

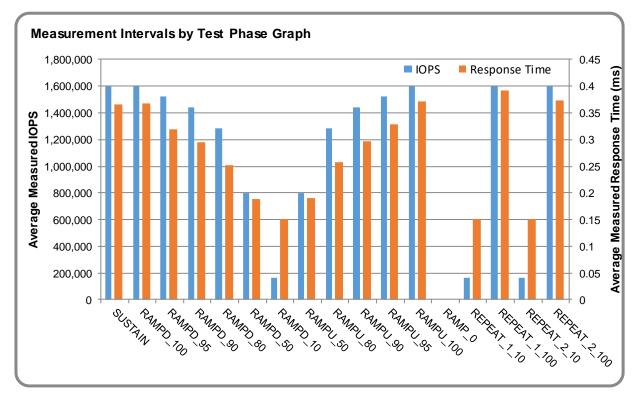
BENCHMARK EXECUTION RESULTS

This portion of the Full Disclosure Report documents the results of the various SPC-1 Tests, Test Phases, and Test Runs.

Benchmark Execution Overview

Workload Generator Input Parameters

The SPC-1 Workload Generator commands and input parameters for the Test Phases are presented in the Supporting Files (see Appendix A).


Primary Metrics Test Phases

The benchmark execution consists of the Primary Metrics Test Phases, including the Test Phases SUSTAIN, RAMPD_100 to RAMPD_10, RAMPU_50 to RAMPU_100, RAMP_0, REPEAT_1 and REPEAT_2.

Each Test Phase starts with a transition period followed by a Measurement Interval (MI).

Measurement Intervals by Test Phase Graph

The following graph presents the average IOPS and the average Response Times measured over the MI of each Test Phase.

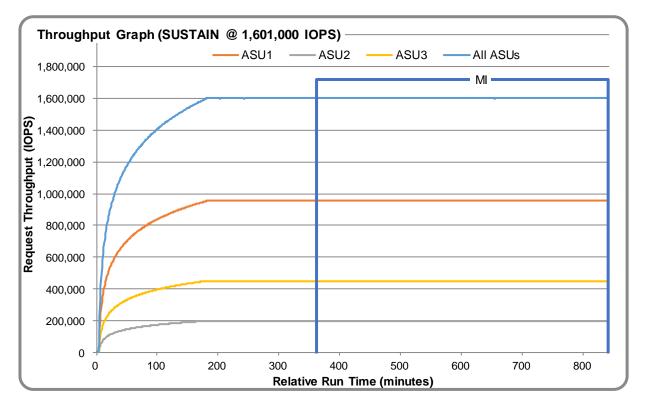
Exception and Waiver

None.

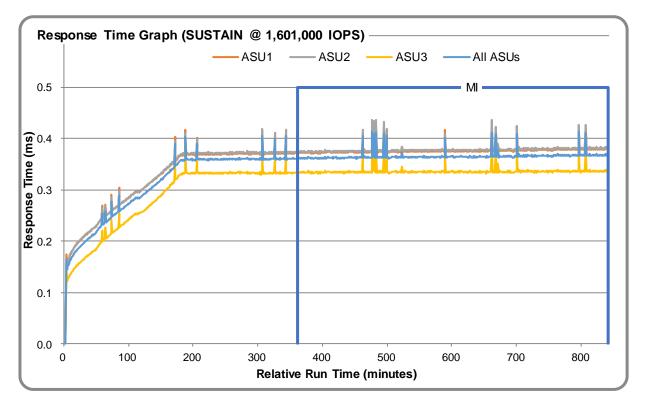
SPC Benchmark 1[™] V3.8.0 Fujitsu Limited ETERNUS DX900 S5 Full Disclosure Report

SUSTAIN Test Phase

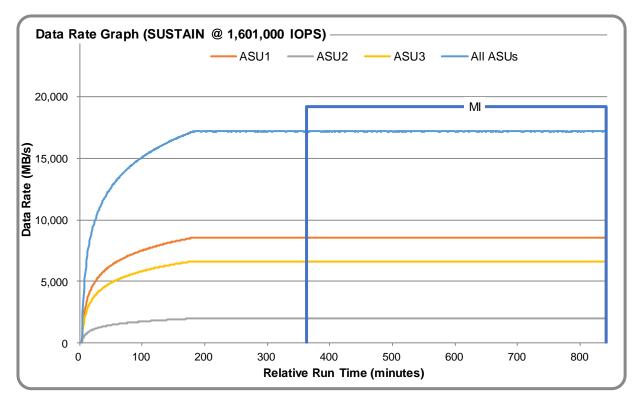
SUSTAIN – Results File

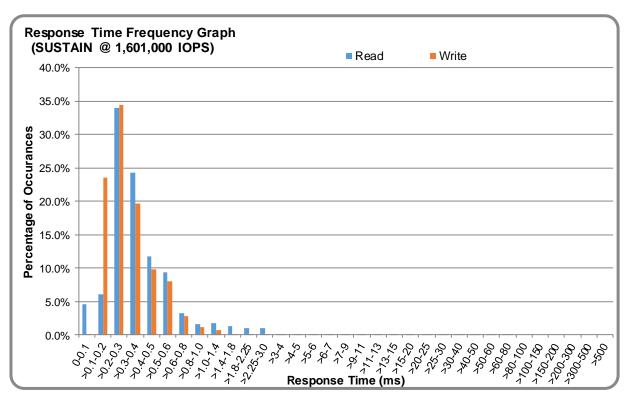

The results file generated during the execution of the SUSTAIN Test Phase is included in the Supporting Files (see Appendix A) as follows:

• SPC1_METRICS_0_Raw_Results.xlsx


SUSTAIN – Execution Times

Interval	Start Date & Time	End Date & Time	Duration
Transition Period	22-Oct-19 19:31:49	23-Oct-19 01:31:49	6:00:00
Measurement Interval	23-Oct-19 01:31:49	23-Oct-19 09:31:50	8:00:01


<u>SUSTAIN – Throughput Graph</u>


<u>SUSTAIN – Response Time Graph</u>

SUSTAIN – Data Rate Graph

SPC Benchmark 1[™] V3.8.0 Fujitsu Limited ETERNUS DX900 S5 Full Disclosure Report

<u>SUSTAIN – Response Time Frequency Graph</u>

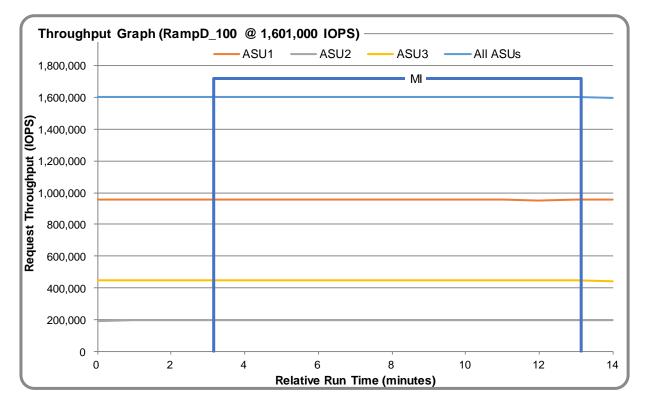
SUSTAIN – Intensity Multiplier

The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percentage of difference (Difference) between Defined and Measured.

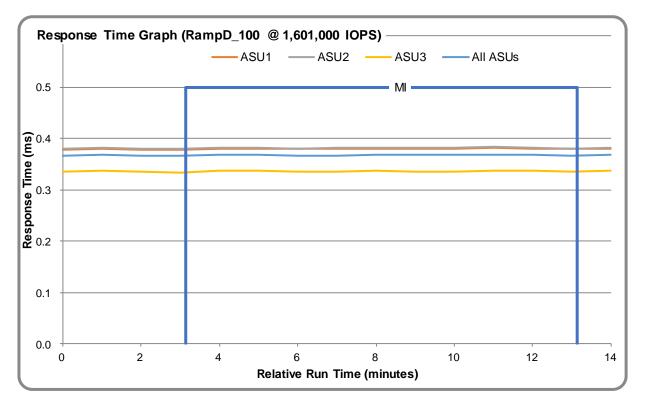
	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0005	0.0002	0.0004	0.0002	0.0007	0.0004	0.0006	0.0002
Difference	0.007%	0.001%	0.001%	0.000%	0.005%	0.005%	0.007%	0.003%

RAMPD_100 Test Phase

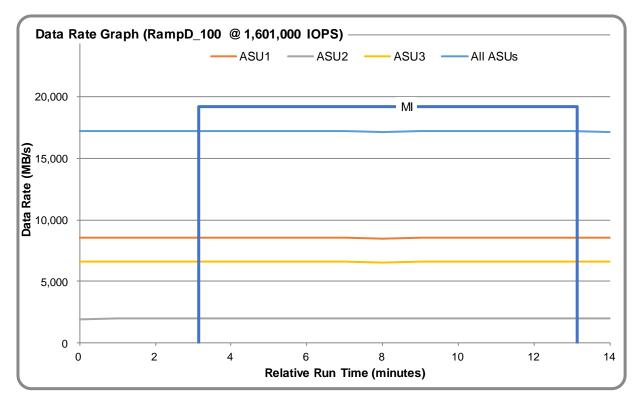
<u>RAMPD_100 – Results File</u>

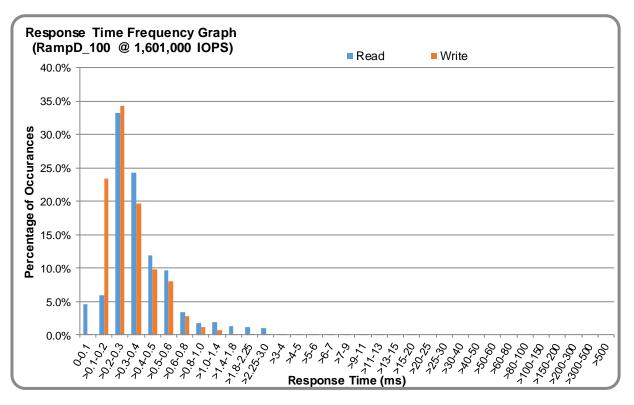

The results file generated during the execution of the RAMPD_100 Test Phase is included in the Supporting Files (see Appendix A) as follows:

• SPC1_METRICS_0_Raw_Results.xlsx


<u>RAMPD_100 – Execution Times</u>

Interval	Start Date & Time	End Date & Time	Duration
Transition Period	23-Oct-19 09:32:49	23-Oct-19 09:35:49	0:03:00
Measurement Interval	23-Oct-19 09:35:49	23-Oct-19 09:45:50	0:10:01


<u>RAMPD_100 – Throughput Graph</u>


<u>RAMPD_100 – Response Time Graph</u>

<u>RAMPD_100 – Data Rate Graph</u>

SPC Benchmark 1[™] V3.8.0 Fujitsu Limited ETERNUS DX900 S5 Full Disclosure Report

<u>RAMPD_100 – Response Time Frequency Graph</u>

<u>RAMPD_100 – Intensity Multiplier</u>

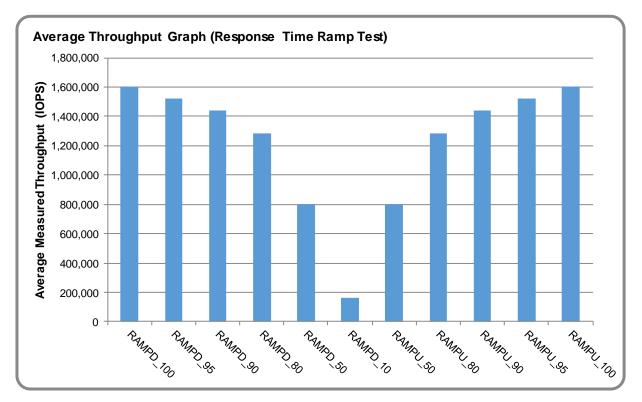
The following table lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percentage of difference (Difference) between Defined and Measured.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0006	0.0001	0.0003	0.0002	0.0007	0.0003	0.0005	0.0002
Difference	0.017%	0.000%	0.017%	0.008%	0.031%	0.006%	0.008%	0.002%

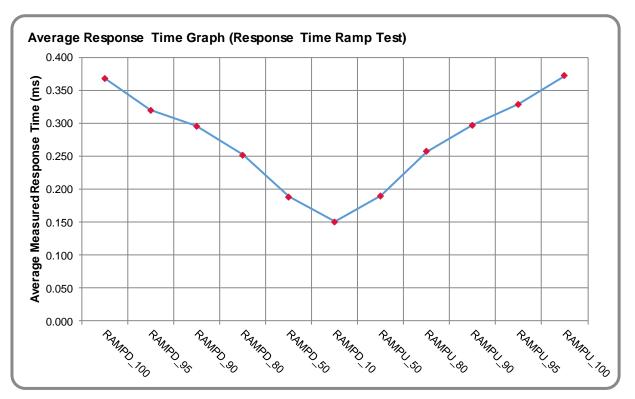
<u>RAMPD_100 – I/O Request Summary</u>

I/O Requests Completed in the Measurement Interval	960,700,992
I/O Requests Completed with Response Time <= 30 ms	960,700,992
I/O Requests Completed with Response Time > 30 ms	0

Response Time Ramp Test

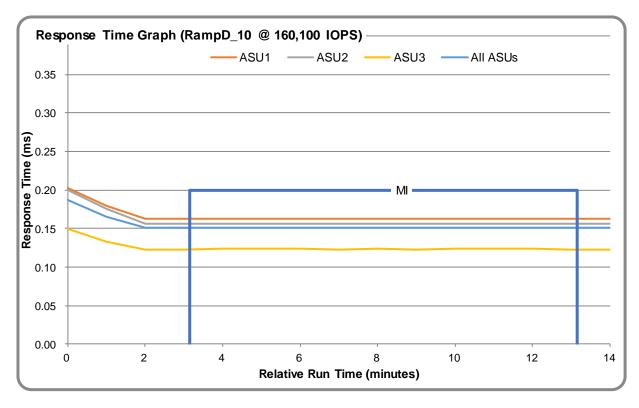

<u>Response Time Ramp Test – Results File</u>

The results file generated during the execution of the Response Time Ramp Test is included in the Supporting Files (see Appendix A) as follows:


• SPC1_METRICS_0_Raw_Results.xlsx

<u>**Response Time Ramp Test – Phases</u>**</u>

The Response Time Ramp Test is comprised of 11 Test Phases, including six Ramp-Down Phases (executed at 100%, 95%, 90%, 80%, 50%, and 10% of the Business Scaling Unit) and five Ramp-Up Phases (executed at 50%, 80%, 90%, 95%, and 100% of the Business Scaling Unit).



<u>Response Time Ramp Test – Average Throughput Graph</u>

<u>Response Time Ramp Test – Average Response Time Graph</u>

<u>Response Time Ramp Test – RAMPD_10 Response Time Graph</u>

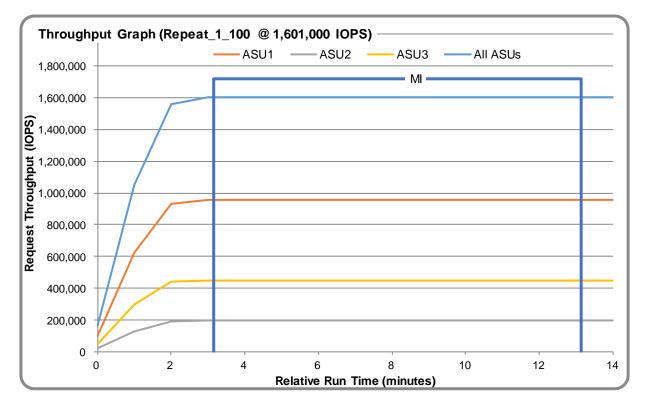
SPC Benchmark 1[™] V3.8.0 Fujitsu Limited ETERNUS DX900 S5 Full Disclosure Report

Submission Identifier: A32012 Submitted for Review: November 5, 2019

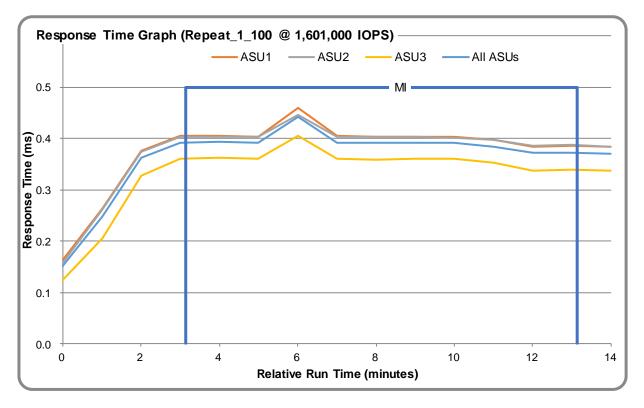
Repeatability Test

Repeatability Test Results File

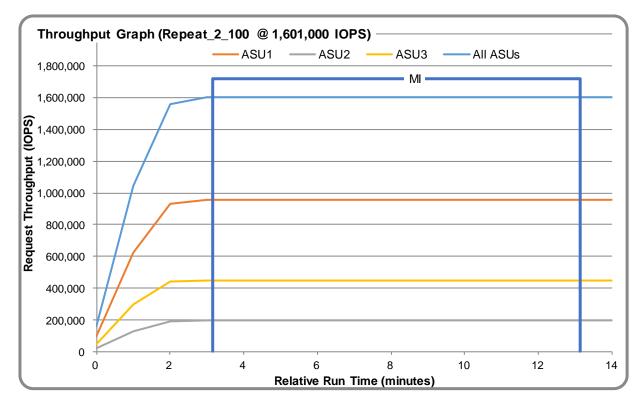
The results file generated during the execution of the Repeatability Test is included in the Supporting Files (see Appendix A) as follows:


• SPC1_METRICS_0_Raw_Results.xlsx

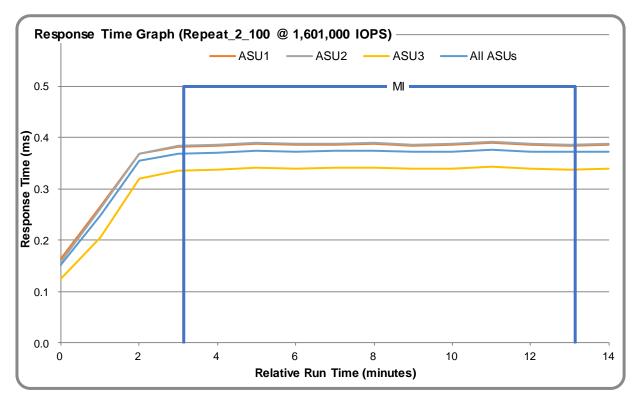
<u>Repeatability Test Results</u>


The throughput measurements for the Response Time Ramp Test (RAMPD) and the Repeatability Test Phases (REPEAT_1 and REPEAT_2) are listed in the table below.

Test Phase	100% IOPS	10% IOPS
RAMPD	1,601,165.1	160,128.3
REPEAT_1	1,601,119.1	160,115.1
REPEAT_2	1,601,114.5	160,096.3


<u>REPEAT_1_100 – Throughput Graph</u>

<u>**REPEAT_1_100 – Response Time Graph**</u>



<u>REPEAT_2_100 – Throughput Graph</u>

SPC Benchmark 1[™] V3.8.0 Fujitsu Limited ETERNUS DX900 S5 Full Disclosure Report

<u>**REPEAT_2_100 – Response Time Graph**</u>

<u>**Repeatability Test – Intensity Multiplier**</u>

The following tables lists the targeted intensity multiplier (Defined), the measured intensity multiplier (Measured) for each I/O stream, its coefficient of variation (Variation), and the percent of difference (Difference) between Defined and Measured.

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0005	0.0001	0.0005	0.0001	0.0011	0.0004	0.0008	0.0002
Difference	0.004%	0.001%	0.002%	0.003%	0.014%	0.028%	0.020%	0.006%

REPEAT_1_100 Test Phase

REPEAT_2_100 Test Phase

	ASU1-1	ASU1-2	ASU1-3	ASU1-4	ASU2-1	ASU2-2	ASU2-3	ASU3-1
Defined	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Measured	0.0350	0.2810	0.0700	0.2100	0.0180	0.0700	0.0350	0.2810
Variation	0.0004	0.0001	0.0002	0.0002	0.0006	0.0003	0.0006	0.0002
Difference	0.006%	0.001%	0.021%	0.004%	0.032%	0.007%	0.001%	0.001%

Space Optimization Techniques

Description of Utilized Techniques

The TSC did not use any space optimization techniques.

Physical Free Space Metrics

The following table lists the Physical Free Space as measured at each of the required points during test execution. If space optimization techniques were not used, "NA" is reported.

Physical Free Space Measurement	Free Space (GB)
After Logical Volume Creation	NA
After ASU Pre-Fill	NA
After Repeatability Test Phase	NA

Space Optimization Metrics

The following table lists the required space optimization metrics. If space optimization techniques were not used, "NA" is reported.

Metric	Value
SPC-1 Space Optimization Ratio	NA
SPC-1 Space Effectiveness Ratio	NA

Data Persistence Test

Data Persistence Test Results File

The results files generated during the execution of the Data Persistence Test is included in the Supporting Files (see Appendix A) as follows:

- SPC1_PERSIST_1_0_Raw_Results.xlsx
- SPC1_PERSIST_2_0_Raw_Results.xlsx

Data Persistence Test Execution

The Data Persistence Test was executed using the following sequence of steps:

- The PERSIST_1_0 Test Phase was executed to completion.
- The Benchmark Configuration was taken through an orderly shutdown process and powered off.
- The Benchmark Configuration was powered on and taken through an orderly startup process.
- The PERSIST_2_0 Test Phase was executed to completion.

Data Persistence Test Results

Data Persistence Test Phase: Persist1						
Total Number of Logical Blocks Written	329,016,597					
Total Number of Logical Blocks Verified	168,995,184					
Total Number of Logical Blocks Overwritten	160,021,413					
Total Number of Logical Blocks that Failed Verification	0					
Time Duration for Writing Test Logical Blocks (sec.)	601					
Size in bytes of each Logical Block	8,192					
Number of Failed I/O Requests in the process of the Test	0					

<u>Committed Data Persistence Implementation</u>

Redundantly configured batteries inside the ETERNUS DX900 S5 storage system allow data in cache memory to be moved to non-volatile memory or to physical disk drives in the event of a power outage. This secured data can then be maintained in that state indefinitely until the power is restored.

APPENDIX A: SUPPORTING FILES

The following table details the content of the Supporting Files provided as part of this Full Disclosure Report.

File Name	Description	Location
/SPC1_RESULTS	Data reduction worksheets	root
SPC1_INIT_0_Raw_Results.xlsx	Raw results for INIT Test Phase	/SPC1_RESULTS
SPC1_METRICS_0_Quick_Look.xlsx	Quick Look Test Run Overview	/SPC1_RESULTS
SPC1_METRICS_0_Raw_Results.xlsx	Raw results for Primary Metrics Test	/SPC1_RESULTS
SPC1_METRICS_0_Summary_Results.xlsx	Primary Metrics Summary	/SPC1_RESULTS
SPC1_PERSIST_1_0_Raw_Results.xlsx	Raw results for PERSIST1 Test Phase	/SPC1_RESULTS
SPC1_PERSIST_2_0_Raw_Results.xlsx	Raw results for PERSIST2 Test Phase	/SPC1_RESULTS
SPC1_Run_Set_Overview.xlsx	Run Set Overview Worksheet	/SPC1_RESULTS
SPC1_VERIFY_0_Raw_Results.xlsx	Raw results for first VERIFY Test Phase	/SPC1_RESULTS
SPC1_VERIFY_1_Raw_Results.xlsx	Raw results for second VERIFY Test Phase	/SPC1_RESULTS
/C_Tuning	Tuning parameters and options	root
All tuning	done via GUI (see Appendix C)	
/D_Creation	Storage configuration creation	root
definitions.exp	Procedure definitions	/D_Creation
doFDRcfg.sh	Shell script to configure the array	/D_Creation
DX900S5_20190916.exp	Configure CLI expect script	/D_Creation
DX900S5_20190916makeLV.sh	Linux LVM configuration script	/D_Creation
showFormatStatus.exp	Check for physical format progress	/D_Creation
/E_Inventory	Configuration inventory	root
log_BeforeF_DH191022154912.zlg_001.txt	Configuration details before the run	/E_Inventory
log_AfterJ_DH191022154912.zlg_001.txt	Configuration details after the run	/E_Inventory
/F_Generator	Workload generator	root
doFDRall_01.sh	Master run file 1	/F_generator
doFDRall_02.sh	Master run file 2	/F_generator
exportLog.exp	Storage array log export	/F_generator
SPC1_DX900S5_20190916.asu	ASU configuration file	/F_generator
SPC1_DX900S5_20190916.hst	Host configuration file	/F_generator

APPENDIX B: THIRD PARTY QUOTATION

All components are available directly through the Test Sponsor (Fujitsu Limited).

APPENDIX C: TUNING PARAMETERS AND OPTIONS

The standard Fujitsu GUI was used to apply the Tuning options for this test.

- 1. In order to execute some of the commands listed below it is necessary to create an user account with maintainer role. Please create such user account and login with the new account.
- 2. Change DCMF (Disk Command Multiplication Factor) value from the default (1) to (10) for all RAID Groups.

The following GUI screen (RAID Group -> Tuning -> Modify RAID Group Parameter is used for each RAID Group and the DCMF parameter is changed to 10 as highlighted in red frame below:

ETERNUS D	X900 S5						ļ	Jser ID : advance	Logout	FUĴĨTSU
Normal	Storage	Name : AD#9	01 Model : ET90	5SA-4651805006	Date : 2019-	10-15 15:41:04				ð ?
Overview	Volume RA	ID Group	Thin Provisioning	Advanced Copy	Connectivity	Component	System			
RAID Group										
Modify RA	ID Group F	Parameters	•							
▶ Informa	tion									*
▶ Parame	ters Setting									
distant.										
(International Control	ed Settings			0	10					
DCMF			ODo not change		10 🌩					
	g Parameter S	Setting	Do not change	Enable Dis	sable					
Throttle			100% 🔻							
Ordered Cu	ıt		0 - 0	65535)						
Target F	RAID Groups									_
5						1 items 1	🔹 🖣 1/1 pages	► H	1 🔷 page 🤇	Go
				Current Setti	ngs					
Name	Status	RAID Level	Total Capa	Rebuild Prior	rity DCMF	Drive Access Prie	ority Throttle	Ordered Cut		
RG#00-00	Available	Mirroring (R/	AID1) 893.00	GB Low	10	-	100%	1.70		
4										•
										•
								Modify	Cano	
								(Modily		

3. Disable Debug Trace Following GUI setting was applied.

System-> System Settings -> Setup Debug Mode: The Master Trace Level was set to Off (Default: Standard)

Normal Stora							User ID : advance Logout	FUĴÎTSU
Norma	ge Name : AD#901	1 Model : ET90	5SA-4651805006	Date : 2019-10-	15 15:38:01	j		ð ?
verview Volume I	RAID Group Th	hin Provisioning	Advanced Copy	Connectivity	Component	System		
<u>ystem</u> > System Settin	gs							
Setup Debug Mode			_					
 Master Trace Leve 	el Settinas							*
Master Trace Level		Off v						
Level		0x FF (0x00	- 0xFF)					
 Trace Level by Gro Panic 	oup							
Collection Mode		Nose and Tail M	ode 🔻					
							Set	•

4. Disable Read Sequential/Write Sequential

Following GUI setting was applied.

System-> System Settings -> Setup Subsystem Parameters:

Read Sequential/Write Sequential was set to Disable (Default: Enable)

ETERNUS DX900 S5						User ID : advance	Logout	FU	ິງເ້າຣບ
Normal Storage Name : AD#	901 Model : ET9	05SA-4651805006	Date : 2019-10	-15 15:39:17				e	?
Overview Volume RAID Group	Thin Provisioning	Advanced Copy	Connectivity	Component	System		_		
System > System Settings									
Setup Subsystem Parameters	_								
Information									*
▼ Display Critical System Mode									
Multipath CSM Order	(Not F	Received)							
 Setup Subsystem Parameters 									
1CM Write Through	Enab	e							
Highland Mode	Enab	e							
Flexible Write Through	Enab	e							
Ignore CM-CM Communication Error	Enab	e							
Read Sequential	Enab	e							
Write Sequential	Enab	e							
Turbo Mode	Enable	le ODisable							
Writeback Limit Count	512	·							
Slow Format	Enab	e							-
						Set	Can	cel	

APPENDIX D: STORAGE CONFIGURATION CREATION

The standard Fujitsu Command Line tool (CLI) was used to create the ETERNUS DX900 S5 SPC-1 configuration.

The 'master' script, **doFDRcfg.sh**, was executed, which in turn, invoked the script, **DX900S5_20190916.exp**. The 'master' script included shell commands to monitor the progress as the physical formatting proceeded, which used the **expect** script **showFormatStatus.exp** to pick up the status information from the array.

The **DX900S5_20190916.exp** script completed steps 1-4, described below for the 32-host port configuration.

Each **expect** script included the **docli** procedure, which was used to issue the CLI commands to the array. That procedure used **ssh** for communication with the array. A second procedure in the script, **doexit**, was used to conclude the execution sequence at the end of the script.

Step 1 – Creation of RAID Groups

A total of 96 RAID Groups were created, according to the configuration plan,

ConfigurationDesign_DX900S5_20190916.xlsx, which is typically prepared in concert with a Fujitsu SE. Each RAID Group was made up of 2 disk drives in a RAID1(1+1) configuration and assigned to a specific CM for operational control. The RAID Groups were named RG#00-00 through RG#11-23.

Step 2 – Creation of the Logical Volumes

4 wide striped logical volumes were created across 24 RAID Groups assigned to the same CM. Total of 16 wide striped logical volumes were created.

Step 3 – Creation of the Global Hot Spares

No drives were designated as the Global Hot Spare.

Step 4 – Assignment of LUN Mapping to the Linux Host Systems

The **DX900S5_20190916.exp** script provided mapping to 32 host ports.

The port LUN mapping was assigned for each of the Logical Volumes using 8 ports on Channel Adapters (CA) in each of the 4 Controller Modules (CM). Each of the volumes, which were defined on RAID Groups owned by a CM, were assigned LUN numbers on the active ports on the CAs installed on same CM.

Step 5 – Creation of striped logical volumes.

Built in logical volume manager in Linux is used to stripe each LUN presented by ETERNUS DX900 S5 array.

This is done in 3 steps included in the **DX900S5_20190916** makeLV.sh script.

1. Create Physical Volumes (PV) for each LUN presented from DX900 S5.

pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b00340000000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400010000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400020000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400030000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b0000002b003400040000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400050000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400060000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400070000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b003400080000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b0000002b003400090000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b0000002b0034000a0000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b0034000b0000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b0000002b0034000c0000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b0034000d0000 pvcreate /dev/disk/by-id/scsi-3600000e00d2b000002b0034000e0000 pvcreate /dev/disk/bv-id/scsi-3600000e00d2b000002b0034000f0000

2. Create one Volume Group with physical extent size of 4.0MiB

vgcreate	asu_vgl	/dev/sdj
vgextend	asu_vg1	/dev/sdn
vgextend	asu_vg1	/dev/sdb
vgextend	asu_vg1	/dev/sdf
vgextend	asu_vg1	/dev/sdk
vgextend	asu_vg1	/dev/sdo
vgextend	asu_vg1	/dev/sdc
vgextend	asu_vg1	/dev/sdg
vgextend	asu_vg1	/dev/sdl
vgextend	asu_vg1	/dev/sdp
vgextend	asu_vg1	/dev/sdd
vgextend	asu_vg1	/dev/sdh
vgextend	asu_vg1	/dev/sdm
vgextend	asu_vg1	/dev/sdq
vgextend	asu_vg1	/dev/sde

vgextend asu_vg1 /dev/sdi

3. Create 20 Logical Volumes for each ASU with 512KiB Stripe size

```
lvcreate -n asu101 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu102 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu103 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu104 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu105 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu106 -i 16 -I 512 -C y -L 3160192MiB asu vg1
lvcreate -n asu107 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu108 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu109 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu201 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu202 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu203 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu204 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu205 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu206 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu207 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu208 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu209 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu301 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
lvcreate -n asu302 -i 16 -I 512 -C y -L 3160192MiB asu_vg1
```

Referenced Scripts

- doFDRcfg.sh
- DX900S5_20190916.exp
- showFormatStatus.exp
- DX900S5_20190916makeLV.sh

APPENDIX E: CONFIGURATION INVENTORY

The following files (included in the Supporting Files) capture the configuration before and after the test run.

- log_BeforeF_DH191022154912.zlg_001.txt
- log_AfterJ_DH191022154912.zlg_001.txt

APPENDIX F: WORKLOAD GENERATOR

The ASU configuration file can be found in the Supporting Files.

• SPC1_DX900S5_20190916.asu

The host configuration file can be found in the Supporting Files.

• SPC1_DX900S5_20190916.hst

The following 'master' script was used to execute the required ASU pre-fill, Primary Metrics Test (Sustainability Test Phase, IOPS Test Phase, and Response Time Ramp Test Phase), Repeatability Test (Repeatability Test Phase 1 and Repeatability Test Phase 2), the SPC-1 Persistence Test Run 1 and the SPC-2 Persistence Test in an uninterrupted sequence with doFDRall_1XV.sh and doFDRall_2H.sh.

The 'master' script invokes various other scripts which appear below in the Referenced Scripts section with a brief description of each referenced script.

- doFDRall_01.sh
- doFDRall_02.sh

Referenced Scripts

The 'master' script invokes the following script in order to export the log file from the storage array.

• exportLog.exp